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Abstract 

This study addresses the growing global burden of diabetes by evaluating whether 
ensemble-based machine learning models can support reliable and cost-efficient early risk 
prediction. Moving beyond accuracy-centered evaluation, the study integrates cost-
sensitive threshold optimization and probability calibration to enhance clinical relevance. 
Random Forest and XGBoost are evaluated using two datasets with contrasting 
population characteristics. Model performance is examined in terms of discriminative 
ability, calibration quality, and total misclassification cost. The results indicate that while 
XGBoost remains competitive on small-scale datasets, Random Forest provides more 
stable calibration and more consistent cost efficiency. These findings suggest that cost-
sensitive and calibrated ensemble approaches have the potential to support more rational 
and economically efficient diabetes screening policies. 
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Abstrak 

Penelitian ini menanggapi meningkatnya beban global diabetes dengan mengevaluasi 
apakah model machine learning berbasis ensemble mendukung prediksi risiko dini yang andal 
dan efisien secara biaya. Berbeda dari evaluasi berbasis akurasi semata, studi ini 
mengintegrasikan optimasi ambang cost-sensitive dan kalibrasi probabilitas untuk 
meningkatkan relevansi klinis. Random Forest dan XGBoost dievaluasi menggunakan 
dua dataset dengan karakteristik populasi yang kontras. Kinerja model dianalisis 
berdasarkan kemampuan diskriminasi, kualitas kalibrasi, dan total biaya kesalahan 
klasifikasi. Hasil menunjukkan bahwa meskipun XGBoost kompetitif pada data berskala 
kecil, Random Forest memberikan kalibrasi yang lebih stabil dan efisiensi biaya yang lebih 
konsisten. Temuan ini menunjukkan bahwa pendekatan ensemble yang sensitif terhadap 
biaya, dan terkalibrasi, berpotensi mendukung kebijakan skrining diabetes yang lebih 
rasional dan efisien secara biaya. 

 
Kata kunci: Cost-Sensitive Learning, Kalibrasi Probabilitas, Prediksi Diabetes, Random Forest, XGBoost. 
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Pendahuluan  

Diabetes melitus merupakan penyakit metabolik kronis yang ditandai hiperglikemia 

akibat gangguan sekresi atau kerja insulin. Prevalensinya terus meningkat secara global dan 

menimbulkan tantangan kesehatan yang serius. International Diabetes Federation (IDF) 

melaporkan bahwa pada tahun 2025 sekitar 11,1% populasi dewasa dunia hidup dengan 

diabetes, dengan lebih dari 40% penderitanya belum menyadari kondisi tersebut 1. Jumlah ini 

diproyeksikan mencapai 853 juta orang pada tahun 2050 2. Peningkatan kasus yang cepat ini 

menempatkan diabetes sebagai salah satu penyebab utama morbiditas dan mortalitas global, 

sehingga deteksi dini menjadi komponen penting dalam upaya pencegahan komplikasi dan 

penurunan beban penyakit. 

Selain dampak klinis, diabetes juga menimbulkan beban ekonomi yang sangat besar. 

Secara global, jumlah penyandang diabetes meningkat dari sekitar 200 juta pada tahun 1990 

menjadi lebih dari 830 juta pada 2022 3. Kadar glukosa darah tinggi berkontribusi sekitar 11% 

terhadap kematian kardiovaskular 4. Dari sisi ekonomi, total beban diabetes di Amerika 

Serikat pada tahun 2022 mencapai USD 412,9 miliar per tahun 5, sementara pengeluaran 

kesehatan terkait diabetes secara global telah melampaui USD 1 triliun 6. Fakta ini 

menunjukkan bahwa tanpa pendekatan deteksi dan pengelolaan risiko yang lebih efisien, 

diabetes berpotensi mengancam keberlanjutan sistem kesehatan. 

Dalam konteks tersebut, pendekatan machine learning (ML) semakin banyak digunakan 

untuk mendukung deteksi dini diabetes. Metode ensemble learning berbasis decision tree seperti 

Random Forest (RF) dan gradient boosting, menunjukkan kemampuan yang kuat dalam 

menangani kompleksitas data kesehatan. Kajian sistematis melaporkan bahwa model gradient 

boosting dan tree-based ensemble models termasuk yang paling efektif prediksi diabetes tipe 2 7. 

Studi empiris juga menunjukkan performa tinggi, misalnya, akurasi hingga 92,85% pada 

prediksi diabetes menggunakan data Pima Indians Diabetes 8. Temuan-temuan ini 

mengindikasikan bahwa model ensemble memiliki potensi besar sebagai alat prediksi risiko 

diabetes. 

Namun demikian, terdapat celah penelitian yang signifikan. Sebagian besar studi 

sebelumnya masih berfokus pada metrik performa umum dan belum secara memadai 

mempertimbangkan perbedaan dampak klinis dan ekonomi dari kesalahan klasifikasi. Dalam 

praktik medis, kesalahan False Negative (FN) memiliki konsekuensi yang jauh lebih serius 

dibandingkan False Positive (FP) karena dapat menyebabkan keterlambatan diagnosis dan 

 
1 IDF, “Diabetes Facts and Figures | International Diabetes Federation,” 2025, https://idf.org/about-
diabetes/diabetes-facts-figures/. 
2 IDF. 
3 WHO, “Diabetes,” WHO, 2024, https://www.who.int/news-room/fact-sheets/detail/diabetes. 
4 WHO. 
5 Emily D. Parker et al., “Economic Costs of Diabetes in the U.S. in 2022,” Diabetes Care 47, no. 1 (January 2, 
2024): 26–43, https://doi.org/10.2337/DCI23-0085. 
6 IDF, “The Diabetes Atlas | Global Diabetes Data & Statistics,” International Diabetes Federation (IDF), 
2025, https://diabetesatlas.org/. 
7 Panagiotis D. Petridis et al., “A Review on Trending Machine Learning Techniques for Type 2 Diabetes 
Mellitus Management,” Informatics 2024, Vol. 11, Page 70 11, no. 4 (September 27, 2024): 70, 
https://doi.org/10.3390/INFORMATICS11040070. 
8 Shahid Mohammad Ganie et al., “An Ensemble Learning Approach for Diabetes Prediction Using Boosting 
Techniques,” Frontiers in Genetics 14 (2023): 1252159, https://doi.org/10.3389/FGENE.2023.1252159. 
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meningkatkan risiko komplikasi, sementara FP umumnya hanya memicu pemeriksaan 

lanjutan dengan risiko lebih rendah. Pendekatan cost-sensitive learning, yang memberikan bobot 

biaya lebih besar pada kesalahan FN, telah terbukti mampu menurunkan misclassification cost 

secara signifikan 9 dan terbukti dapat menurunkan misclassification cost secara signifikan 10. 

Selain itu, aspek kalibrasi probabilitas sering diabaikan, padahal model dengan probabilitas 

yang tidak terkalibrasi dapat menghasilkan estimasi risiko yang bias dan mengganggu 

pengambilan keputusan klinis meskipun memiliki akurasi tinggi 11 Integrasi cost-sensitive learning 

dan kalibrasi probabilitas dalam evaluasi model prediksi diabetes masih relatif terbatas, 

terutama dalam pengujian lintas populasi dengan karakteristik data yang berbeda. 

Berdasarkan celah tersebut, penelitian ini mengevaluasi kinerja model ensemble RF dan 

XGBoost menggunakan dua dataset dengan karakteristik kontras, yaitu Pima yang berskala 

kecil dan relatif homogen 768 data, serta NHANES yang berskala besar dan heterogen sekitar 

19.000 data. Pendekatan cost-sensitive dan kalibrasi probabilitas diterapkan untuk 

meningkatkan sensitivitas terhadap kesalahan FN, menjaga reliabilitas probabilitas prediksi, 

serta menekan misclassification cost. 

Metode 

Penelitian ini mengikuti alur metodologis terstruktur yang dimulai dari pra-pemrosesan 

data, pemodelan, optimasi berbasis fungsi biaya, kalibrasi probabilitas, hingga evaluasi kinerja 

berbasis klinis dan ekonomi. Tahap pra-pemrosesan mencakup penanganan nilai hilang, 

transformasi variabel kategorikal, normalisasi fitur numerik, serta penyeimbangan kelas untuk 

mengatasi ketidakseimbangan data. Selanjutnya, dua model ensemble berbasis pohon 

keputusan, yaitu RF dan XGBoost, dilatih dan dievaluasi. Untuk meningkatkan relevansi 

klinis, dilakukan optimasi ambang keputusan berbasis biaya serta kalibrasi probabilitas. 

Kinerja model kemudian dinilai menggunakan pendekatan multi-metrik dan analisis 

sensitivitas biaya guna memastikan keseimbangan antara performa prediktif dan efisiensi 

ekonomi. 

Pra-Pemrosesan Data  

Penanganan Nilai Hilang 

Nilai hilang (missing values) dapat menyebabkan distorsi distribusi data, data, 

menurunkan akurasi model, serta menimbulkan bias estimasi parameter, terutama pada 

model prediktif medis yang sensitif terhadap kualitas input 12. Pada dataset Pima, yang 

 
9 Imane Araf, Ali Idri, and Ikram Chairi, “Cost-Sensitive Learning for Imbalanced Medical Data: A Review,” 
Artificial Intelligence Review 2024 57:4 57, no. 4 (March 1, 2024): 1–72, https://doi.org/10.1007/S10462-023-
10652-8; Nguyen Thai-Nghe, Zeno Gantner, and Lars Schmidt-Thieme, “Cost-Sensitive Learning Methods for 
Imbalanced Data,” Proceedings of the International Joint Conference on Neural Networks, 2010, 
https://doi.org/10.1109/IJCNN.2010.5596486. 
10 Thai-Nghe, Gantner, and Schmidt-Thieme, “Cost-Sensitive Learning Methods for Imbalanced Data.” 
11 Ben Van Calster et al., “Calibration: The Achilles Heel of Predictive Analytics,” BMC Medicine 17, no. 1 
(December 16, 2019), https://doi.org/10.1186/S12916-019-1466-7; Lathan Liou et al., “Assessing Calibration 
and Bias of a Deployed Machine Learning Malnutrition Prediction Model within a Large Healthcare System,” 
Npj Digital Medicine 2024 7:1 7, no. 1 (June 6, 2024): 149-, https://doi.org/10.1038/s41746-024-01141-5. 
12 Dajung Ryu and Sohyune Sok, “Prediction Model of Quality of Life Using the Decision Tree Model in Older 
Adult Single-Person Households: A Secondary Data Analysis,” Frontiers in Public Health 11 (August 31, 2023): 
1224018, https://doi.org/10.3389/FPUBH.2023.1224018/BIBTEX; Luke Oluwaseye Joel, Wesley 
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memiliki distribusi fitur cenderung skewed dan mengandung outlier, imputasi dilakukan 

menggunakan nilai median 13. Pada dataset NHANES, variabel numerik diimputasi 

menggunakan median, sedangkan variabel kategorikal menggunakan modus. Selain itu, fitur 

dengan proporsi nilai hilang lebih dari 50% dieliminasi untuk mengurangi potensi bias dan 

meningkatkan reliabilitas pemodelan 14. 

Transformasi Variabel Kategorikal 

Variabel kategorikal ditransformasikan menggunakan One-Hot Encoding (OHE) agar 

dapat diproses oleh algoritma pembelajaran mesin 15. Pendekatan ini mencegah munculnya 

hubungan ordinal semu dan membantu mengurangi bias interaksi antar fitur pada model 

medis yang kompleks 16. Selain itu, OHE merupakan tahap penting dalam feature engineering 

untuk menjaga kelengkapan informasi kategorikal selama proses pembelajaran model 17. 

Normalisasi Fitur Numerik 

Normalisasi fitur numerik dilakukan menggunakan StandardScaler agar seluruh fitur 

memiliki skala yang sebanding. Feature scaling berperan penting dalam meningkatkan 

stabilitas optimasi dan mempercepat konvergensi algoritma 18.  Selain itu, normalisasi 

membantu menjaga stabilitas proses kalibrasi probabilitas, karena metode seperti Platt Scaling 

dan Isotonic Regression sensitif terhadap distribusi nilai input 19. Dalam sistem prediksi medis 

yang kompleks, normalisasi juga berkontribusi dalam mengurangi bias struktural akibat 

perbedaan skala antar fitur 20. 

 
Doorsamy, and Babu Sena Paul, “A Comparative Study of Imputation Techniques for Missing Values in 
Healthcare Diagnostic Datasets,” International Journal of Data Science and Analytics 2025 20:7 20, no. 7 (June 11, 
2025): 6357–73, https://doi.org/10.1007/S41060-025-00825-9; Riska Dhenabayu et al., “Harnessing the 
Power of Transformer Networks in AI-Driven Decision Support Systems for Badminton Action Recognition,” 
2024 12th International Conference on Cyber and IT Service Management, CITSM 2024, 2024, 
https://doi.org/10.1109/CITSM64103.2024.10775332; Manahel Altalhan, Abdulmohsen Algarni, and Monia 
Turki-Hadj Alouane, “Imbalanced Data Problem in Machine Learning: A Review,” IEEE Access 13 (2025): 
13686–99, https://doi.org/10.1109/ACCESS.2025.3531662. 
13 Joel, Doorsamy, and Paul, “A Comparative Study of Imputation Techniques for Missing Values in Healthcare 
Diagnostic Datasets.” 
14 Ryu and Sok, “Prediction Model of Quality of Life Using the Decision Tree Model in Older Adult Single-
Person Households: A Secondary Data Analysis”; Riska Dhenabayu, Hujjatullah Fazlurrahman, and 
Purwohandoko, “Potential Researches of GAN in Fashion Areas,” Proceedings - 2023 6th International Conference 
on Computer and Informatics Engineering: AI Trust, Risk and Security Management (AI Trism), IC2IE 2023, 2023, 276–
81, https://doi.org/10.1109/IC2IE60547.2023.10331411. 
15 Fabian Pedregosa et al., “Scikit-Learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion 
Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu 
Perrot,” Journal of Machine Learning Research 12 (2011): 2825–30. 
16 Ryu and Sok, “Prediction Model of Quality of Life Using the Decision Tree Model in Older Adult Single-
Person Households: A Secondary Data Analysis”; Altalhan, Algarni, and Turki-Hadj Alouane, “Imbalanced 
Data Problem in Machine Learning: A Review.” 
17 Alice Zheng and Amanda Casari, Feature Engineering for Machine Learning: Principles and Techniques for Data 
Scientists, ACM Computing Surveys, First Edit, vol. 53 (Sebastopol, CA: O’Reilly Media, Inc., 2018). 
18 Md Manjurul Ahsan et al., “Effect of Data Scaling Methods on Machine Learning Algorithms and Model 
Performance,” Technologies 2021, Vol. 9, Page 52 9, no. 3 (July 24, 2021): 52, 
https://doi.org/10.3390/TECHNOLOGIES9030052. 
19 Van Calster et al., “Calibration: The Achilles Heel of Predictive Analytics.” 
20 Zheng and Casari, Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. 
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Penyeimbangan Kelas 

Data prediksi diabetes umumnya bersifat tidak seimbang, dengan jumlah sampel positif 

lebih sedikit dibandingkan negatif. Ketidakseimbangan ini dapat menurunkan recall dan 

meningkatkan risiko FN, yang berbahaya dalam konteks klinis. Untuk mengatasi hal tersebut, 

digunakan Synthetic Minority Oversampling Technique (SMOTE). Metode ini menghasilkan 

sampel sintetis baru yang mengikuti distribusi kelas minoritas dan terbukti meningkatkan 

stabilitas prediksi pada dataset kesehatan 21. Penerapan SMOTE dilakukan hanya pada data 

latih di setiap lipatan cross-validation untuk mencegah data leakage, sesuai praktik terbaik 

pemodelan medis 22. 

Meskipun SMOTE efektif dalam mengurangi bias kelas mayoritas dan menekan risiko 

false negative, perlu dicermati bahwa sampel sintetis yang dihasilkan oleh SMOTE 

merupakan interpolasi matematis, bukan variasi klinis yang terjadi di dunia nyata. Oleh karena 

itu, peningkatan performa tetap memerlukan evaluasi lanjutan sebelum diadopsi dalam 

skenario implementasi klinis nyata. 

Optimasi Ambang Keputusan  

Dalam konteks klinis, biaya kesalahan klasifikasi tidak bersifat simetris. Kesalahan FN 

memiliki konsekuensi yang jauh lebih serius dibandingkan FP. Oleh karena itu, ambang 

prediksi default tidak digunakan secara langsung, melainkan dioptimalkan berdasarkan fungsi 

biaya 𝐶𝑜𝑠𝑡 = (𝐹𝑁 × 12.022) + (𝐹𝑃 × 15). Nilai biaya FN merepresentasikan estimasi biaya tahunan 

penanganan pasien diabetes USD 12.022 , sedangkan biaya FP mencerminkan biaya 

pemeriksaan lanjutan berisiko rendah USD 15 23. Optimasi ambang dilakukan melalui 

threshold sweep untuk menemukan nilai yang meminimalkan total misclassification cost, sejalan 

dengan prinsip cost-sensitive learning pada data medis tidak seimbang 24. 

Pemodelan 

Pemodelan dilakukan menggunakan dua algoritma ensemble berbasis pohon 

keputusan, yaitu RF dan XGBoost, yang dipilih karena kemampuannya dalam menangani 

hubungan non-linear dan interaksi multivariabel yang umum dijumpai pada data klinis. 

Pemilihan kedua model ini juga bertujuan untuk membandingkan karakteristik performa 

algoritma ensemble pada populasi dengan skala dan tingkat heterogenitas yang berbeda. 

RF merupakan metode ensemble berbasis bagging yang membangun banyak pohon 

keputusan secara paralel pada subset data dan fitur yang berbeda. Pendekatan ini 

memungkinkan RF mengurangi varians model dan meningkatkan stabilitas prediksi, 

 
21 Ilias Tougui, Abdelilah Jilbab, and Jamal El Mhamdi, “Impact of the Choice of Cross-Validation Techniques 
on the Results of Machine Learning-Based Diagnostic Applications,” Healthcare Informatics Research 27, no. 3 
(July 1, 2021): 189, https://doi.org/10.4258/HIR.2021.27.3.189; Araf, Idri, and Chairi, “Cost-Sensitive 
Learning for Imbalanced Medical Data: A Review.” 
22 Amey Vrudhula et al., “Machine Learning and Bias in Medical Imaging: Opportunities and Challenges,” 
Circulation. Cardiovascular Imaging 17, no. 2 (February 1, 2024): e015495, 
https://doi.org/10.1161/CIRCIMAGING.123.015495. 
23 Parker et al., “Economic Costs of Diabetes in the U.S. in 2022.” 
24 Araf, Idri, and Chairi, “Cost-Sensitive Learning for Imbalanced Medical Data: A Review”; Joffrey L. Leevy 
et al., “Threshold Optimization and Random Undersampling for Imbalanced Credit Card Data,” Journal of Big 
Data 2023 10:1 10, no. 1 (May 6, 2023): 1–22, https://doi.org/10.1186/S40537-023-00738-Z. 
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khususnya pada dataset berukuran kecil hingga menengah seperti Pima. Studi sebelumnya 

menunjukkan bahwa RF relatif tahan terhadap overfitting dan mampu mempertahankan 

performa yang konsisten tanpa memerlukan penalaan parameter yang sangat kompleks, 

sehingga sering direkomendasikan untuk aplikasi klinis dengan keterbatasan jumlah sampel 
25. Selain itu, RF menyediakan informasi feature importance yang berguna untuk interpretasi 

klinis dan identifikasi faktor risiko utama diabetes. 

Sebaliknya, XGBoost menggunakan pendekatan boosting bertahap, di mana setiap 

pohon baru dibangun untuk memperbaiki kesalahan prediksi dari pohon sebelumnya. 

Mekanisme ini membuat XGBoost lebih adaptif dalam menangkap pola kompleks dan 

interaksi halus antar variabel, terutama pada dataset berskala besar dan heterogen seperti 

NHANES. Penelitian sebelumnya menunjukkan bahwa XGBoost memiliki kemampuan 

generalisasi yang tinggi ketika diterapkan lintas populasi dan mampu mengelola variasi 

distribusi data yang luas secara efektif 26. Karakteristik ini menjadikan XGBoost relevan untuk 

mengevaluasi kinerja model pada data populasi besar dengan kompleksitas tinggi. 

Dengan menggunakan RF dan XGBoost secara paralel, penelitian ini tidak hanya 

membandingkan performa prediktif kedua algoritma, tetapi juga mengevaluasi perbedaan 

stabilitas, sensitivitas terhadap kesalahan FN, serta konsistensi kinerja pada konteks populasi 

yang berbeda. Pendekatan komparatif ini memungkinkan analisis yang lebih komprehensif 

mengenai kesesuaian model ensemble untuk penerapan skrining risiko diabetes pada skenario 

data klinis yang beragam. 

Kalibrasi Probabilitas 

Model ensemble berbasis pohon cenderung menghasilkan probabilitas prediksi yang 

overconfident 27. Oleh karena itu, dilakukan kalibrasi probabilitas menggunakan dua pendekatan, 

yaitu Platt Scaling dan Isotonic Regression 28. Metode Platt Scaling memetakan skor prediksi model 

𝑓(𝑥) ke dalam ruang probabilitas menggunakan fungsi logistik berikut: 

𝑝̂ =  
1

1+𝑒−(𝐴𝑓(𝑥)+𝐵)
                                                

Sebaliknya, Isotonic Regression dilakukan dengan mencari fungsi monotonik 𝑔(𝑥) yang 

meminimalkan selisih kuadrat antara probabilitas awal dan probabilitas hasil kalibrasi: 

𝑝̂ =
arg                                    𝑚𝑖𝑛

𝑝1̂  ≤  𝑝2̂ ≤ ⋯ ≤ 𝑝𝑛̂
∑(𝑝𝑖 − 𝑝𝑖̂)

𝑛

𝑖=1

2 

Platt Scaling digunakan untuk data yang relatif homogen, sedangkan Isotonic Regression 

lebih sesuai untuk data berskala besar dan heterogen. Kalibrasi ini bertujuan memastikan 

bahwa probabilitas prediksi mencerminkan risiko klinis yang sebenarnya 29. 

 
25 Philipp Probst, Marvin Wright, and Anne-Laure Boulesteix, “Hyperparameters and Tuning Strategies for 
Random Forest,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 9, no. 3 (February 26, 2019), 
https://doi.org/10.1002/widm.1301. 
26 Abdoul Malik, “Comparative Evaluation of Ensemble Learning Algorithms for Early Detection of Diabetes,” 
EDRAAK 2025 (September 6, 2025): 103–10, https://doi.org/10.70470/EDRAAK/2025/013. 
27 Van Calster et al., “Calibration: The Achilles Heel of Predictive Analytics.” 
28 Jing Li, “Area under the ROC Curve Has the Most Consistent Evaluation for Binary Classification,” PLOS 
ONE 19, no. 12 (December 1, 2024): e0316019, https://doi.org/10.1371/JOURNAL.PONE.0316019. 
29 Bianca Zadrozny and Charles Elkan, “Transforming Classifier Scores into Accurate Multiclass Probability 
Estimates,” Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002, 
694–99, https://doi.org/10.1145/775047.775151. 
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Evaluasi Kinerja dan Analisis Sensitivitas Biaya 

Kinerja model dievaluasi menggunakan pendekatan multi-metrik yang mencakup AUC, 

Precision-Recall AUC (PR-AUC), accuracy, precision, recall (sensitivitas), specificity, F1-score, Matthews 

Correlation Coefficient (MCC), serta Brier Score. Pendekatan ini dipilih karena tidak ada satu 

metrik tunggal yang dapat merepresentasikan performa model secara komprehensif pada data 

kesehatan yang tidak seimbang 30. Selain itu, dilakukan analisis sensitivitas biaya untuk menilai 

sejauh mana optimasi ambang keputusan mampu menurunkan total misclassification cost. 

Evaluasi berbasis biaya ini memastikan bahwa model tidak hanya unggul secara teknis, tetapi 

juga relevan secara klinis dan ekonomis 31. 

  

Analisis dan Diskusi 

Hasil Evaluasi Performa RF dan XGBoost 

Hasil evaluasi performa model pada kedua dataset ditunjukkan pada Tabel 1 dan Tabel 

2.  

Table 1. Performa RF dan XGBoost Tanpa Mempertimbangkan Sensitivitas Biaya 

Indikator RF 

(Pima) 

XGBoost 

(Pima) 

RF 

(NHANES) 

XGBoost 

(NHANES) 

AUC 0.814 0.816 0.996 0.990 

PR-AUC 0.693 0.689 0.993 0.974 

Accuracy 0.734 0.740 0.985 0.971 

Precision 0.603 0.625 0.956 0.914 

Recall  0.704 0.648 0.979 0.957 

Specificity 0.750 0.790 0.987 0.975 

F1-score 0.650 0.636 0.967 0.935 

MCC 0.440 0.435 0.958 0.917 

Brier 

score 

0.170 0.203 0.012 0.025 

 

Tabel 1 menunjukkan performa dasar RF dan XGBoost tanpa mempertimbangkan 

sensitivitas biaya. Pada dataset Pima, kedua model menunjukkan kemampuan diskriminasi 

yang relatif seimbang, dengan AUC XGBoost sedikit lebih tinggi dibandingkan RF. Namun, 

RF menunjukkan nilai Recall dan PR-AUC yang lebih tinggi, mengindikasikan keseimbangan 

yang lebih baik antara pendeteksian kasus positif dan ketepatan prediksi pada kondisi 

ketidakseimbangan kelas. 

Pada dataset NHANES, perbedaan performa antara kedua model menjadi lebih jelas. 

RF menunjukkan performa yang lebih stabil dengan nilai AUC, PR-AUC, MCC, dan Brier 

Score yang lebih baik dibandingkan XGBoost. Hasil ini mengindikasikan bahwa RF tidak 

 
30 Ryu and Sok, “Prediction Model of Quality of Life Using the Decision Tree Model in Older Adult Single-
Person Households: A Secondary Data Analysis”; Victor Chang et al., “An Assessment of Machine Learning 
Models and Algorithms for Early Prediction and Diagnosis of Diabetes Using Health Indicators,” Healthcare 
Analytics 2 (November 1, 2022): 100118, https://doi.org/10.1016/J.HEALTH.2022.100118. 
31 Parker et al., “Economic Costs of Diabetes in the U.S. in 2022”; Araf, Idri, and Chairi, “Cost-Sensitive 
Learning for Imbalanced Medical Data: A Review.” 
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hanya unggul dalam diskriminasi kelas, tetapi juga menghasilkan probabilitas prediksi yang 

lebih konsisten pada populasi besar dan heterogen. 

Setelah dilakukan penyesuaian ambang prediksi berbasis sensitivitas biaya, performa 

model berubah sebagaimana terlihat pada Tabel 2.  

Table 2. Performa RF dan XGBoost Setelah Kalibrasi Probabilitas dengan 

Mempertimbangkan Sensitivitas Biaya 

Indikator RF 

(Pima) 

XGBoost 

(Pima) 

RF 

(NHANES) 

XGBoost 

(NHANES) 

Best 

Threshold 

0.05 0.01 0.01 0.02 

Accuracy 0.481 0.649 0.764 0.729 

Precision 0.403 0.500 0.483 0.448 

Recall  1.000 0.944 0.996 0.995 

Specificity 0.200 0.490 0.996 0.995 

F1-score 0.574 0.654 0.698 0.653 

MCC 0.284 0.438 0.650 0.618 

 

Tabel 2 memperlihatkan bahwa optimasi ambang berbasis biaya secara signifikan 

meningkatkan Recall pada kedua model, khususnya pada dataset Pima. Namun, peningkatan 

Recall tersebut diikuti oleh penurunan Specificity dan peningkatan False Positive, terutama 

pada RF. Temuan ini menegaskan adanya trade-off klinis yang tidak terhindarkan antara 

sensitivitas dan ketepatan klasifikasi, yang harus dipertimbangkan dalam konteks 

implementasi skrining. 

Kurva ROC 

Gambar 1 menunjukkan hubungan antara True Positive Rate (Sensitivity) dan False Positive 

Rate pada berbagai nilai ambang prediksi. 

 
Gambar 1. Kurva ROC Dataset Pima dan NHANES 

Kurva ROC memperlihatkan bahwa pada dataset Pima, XGBoost memiliki keunggulan 

marginal dalam AUC dibandingkan RF. Namun, pada dataset NHANES, RF menunjukkan 

performa yang lebih konsisten dengan kurva yang mendekati sudut kiri atas, mencerminkan 

kemampuan diskriminasi yang sangat baik pada populasi besar. 

Kurva Precision-Recall 
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Gambar 2 menunjukkan hubungan antara nilai Precision dan Recall pada nilai ambang 

prediksi.  

 
Gambar 2. Kurva PR Dataset Pima dan NHANES 

Pada dataset Pima, RF menunjukkan PR-AUC yang sedikit lebih tinggi dibandingkan 

XGBoost, menandakan kemampuan yang lebih baik dalam mempertahankan Precision ketika 

Recall meningkat. Pada dataset NHANES, keunggulan RF menjadi lebih jelas dengan PR-

AUC yang lebih tinggi dan kurva yang relatif stabil di hampir seluruh rentang Recall. Hal ini 

penting dalam konteks klinis, karena kestabilan Precision pada Recall tinggi berkontribusi pada 

penurunan risiko FN. 

Analisis Threshold Sweep 

Gambar 3 menampilkan hasil analisis perubahan nilai threshold sweep untuk kedua model 

pada dataset Pima dan NHANES.  

 
Gambar 3. Kurva Threshold Sweep Pima dan NHANES 

Pada dataset Pima, RF mencapai titik biaya minimum pada threshold sekitar 0,05, di 

mana Recall meningkat secara signifikan sebelum biaya kembali meningkat pada threshold 

ekstrem. XGB menunjukkan pola serupa, tetapi dengan fluktuasi F1-score yang lebih besar, 

mengindikasikan stabilitas yang lebih rendah pada data kecil dan homogen. 
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Pada dataset NHANES, kedua model mempertahankan Recall yang sangat tinggi pada 

threshold rendah, namun RF menunjukkan penurunan biaya yang lebih konsisten 

dibandingkan XGB. Temuan ini menguatkan argumen bahwa RF lebih stabil dalam 

mengelola trade-off Recall–Specificity pada populasi besar. Dengan mempertimbangkan 

bahwa kesalahan FN memiliki konsekuensi klinis dan ekonomi yang lebih serius, RF lebih 

layak diprioritaskan untuk skenario skrining berbasis populasi. 

Kurva Kalibrasi 

Gambar 4 menunjukkan hubungan antara probabilitas prediksi rata-rata dan proporsi 

aktual kasus positif. sedangkan sumbu vertikal menunjukkan proporsi aktual sampel yang 

termasuk dalam kelas positif pada setiap interval probabilitas.  

 
Gambar 4. Kurva Kalibrasi 

Pada dataset Pima, kurva kalibrasi kedua model menunjukkan fluktuasi yang cukup 

besar, yang kemungkinan dipengaruhi oleh ukuran sampel yang relatif kecil. RF memiliki 

Brier Score yang lebih rendah dibandingkan XGB, menunjukkan estimasi probabilitas yang 

lebih mendekati risiko aktual. 

Pada dataset NHANES, kualitas kalibrasi meningkat secara signifikan pada kedua 

model, dengan RF kembali menunjukkan konsistensi probabilitas yang lebih baik. Kurva RF 

lebih dekat dengan garis kalibrasi sempurna dan memiliki Brier Score yang lebih rendah, 

menandakan reliabilitas probabilistik yang lebih tinggi pada populasi besar dan heterogen. 

Interpretasi ROC dan Precision-Recall  

Gambar 1 ROC dan Gambar 2 Precision-Recall pada kedua dataset menunjukkan 

perbedaan karakteristik performa antara RF dan XGBoost dalam tugas klasifikasi diabetes. 

Pada dataset Pima, nilai AUC pada ROC Curve menunjukkan bahwa XGBoost memperoleh 

AUC = 0,816, sedikit lebih tinggi dibanding RF dengan AUC = 0,814, yang mengindikasikan 

kemampuan diskriminatif XGBoost sedikit lebih unggul dalam membedakan pasien dengan 

dan tanpa diabetes. Namun, pada Precision-Recall Curve, RF menunjukkan performa yang lebih 

baik dengan PR-AUC = 0,693, dibanding XGBoost yang memperoleh PR-AUC = 0,689, 

menandakan keseimbangan yang lebih baik antara Recall dan Precision pada kondisi 

ketidakseimbangan kelas. 

Perlu dicermati bahwa pada dataset berukuran kecil dan relatif homogen seperti Pima, 

peningkatan performa pada metrik berbasis sensitivitas juga berpotensi dipengaruhi oleh 

penerapan SMOTE pada data latih. Pada dataset NHANES, RF menunjukkan performa 
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yang lebih unggul secara konsisten. Gambar 1 memperlihatkan bahwa RF mencapai AUC = 

0,996, lebih tinggi dibanding XGBoost yang memperoleh AUC = 0,990, menandakan 

kemampuan diskriminasi hampir sempurna pada populasi besar. Gambar 2 juga 

menunjukkan bahwa RF memperoleh PR-AUC = 0,993, lebih tinggi daripada XGBoost yang 

mencapai PR-AUC = 0,974. Kestabilan nilai Precision pada hampir seluruh rentang Recall pada 

dataset NHANES menunjukkan kemampuan generalisasi yang lebih kuat, yang lebih 

mencerminkan kondisi populasi heterogen dan mendekati skenario implementasi dunia 

nyata.  

 

Efektivitas Penyesuaian Ambang Threshold Sweep 

Gambar 3 menunjukkan bahwa pada dataset Pima, penurunan threshold pada RF hingga 

sekitar 0,05 meningkatkan Recall secara signifikan dan menghasilkan total cost terendah 

sebelum biaya meningkat kembali pada threshold ekstrem. Pola serupa terlihat pada XGBoost, 

namun titik stabilnya berada pada sekitar 0,10, dengan fluktuasi F1-Score yang lebih besar. Hal 

ini menunjukkan bahwa RF lebih stabil dalam menjaga keseimbangan sensitivitas dan 

ketepatan prediksi pada dataset yang kecil dan homogen. 

Penyesuaian cost-sensitive threshold optimization terbukti meningkatkan sensitivitas model 

pada kedua dataset. Namun demikian, nilai threshold optimal yang diperoleh bersifat sangat 

kontekstual terhadap asumsi biaya kesalahan klasifikasi serta karakteristik data yang 

digunakan. Dalam praktik klinis nyata, ambang keputusan tidak dapat diterapkan secara 

universal tanpa mempertimbangkan prevalensi lokal diabetes, kapasitas layanan kesehatan, 

serta kebijakan skrining yang berlaku. Oleh karena itu, hasil threshold sweep dalam penelitian ini 

lebih tepat dipahami sebagai kerangka pendukung pengambilan keputusan berbasis risiko, 

bukan sebagai nilai ambang baku yang siap diterapkan tanpa adaptasi kontekstual. 

Dengan mempertimbangkan bahwa kesalahan FN memiliki konsekuensi klinis dan 

ekonomi yang jauh lebih besar dibandingkan FP, serta mempertimbangkan stabilitas model 

dalam berbagai rentang threshold, RF lebih direkomendasikan sebagai model utama untuk 

skrining risiko diabetes dan penerapan sistem pendukung keputusan klinis. 

Interpretasi Kalibrasi Probabilitas  

Gambar 4 menunjukkan kualitas kalibrasi probabilitas pada kedua model. Pada dataset 

Pima, pola kalibrasi kedua model tampak berfluktuasi akibat ukuran sampel yang relatif kecil, 

yang membatasi stabilitas estimasi probabilitas. Model RF memiliki nilai Brier Score sebesar 

0,170, lebih rendah dibanding XGB dengan nilai 0,203, menunjukkan bahwa RF 

menghasilkan estimasi probabilitas yang lebih reliabel dan lebih mendekati proporsi aktual 

kasus positif. 

Pada dataset NHANES, performa kalibrasi meningkat signifikan seiring ukuran data 

yang lebih besar dan distribusi populasi yang lebih representatif. RF menunjukkan Brier Score 

sebesar 0,012, sedangkan XGB menunjukkan nilai 0,025, menandakan kedua model 

terkalibrasi sangat baik, namun RF tetap menunjukkan konsistensi probabilitas yang lebih 

tinggi. Meskipun demikian, penerapan probabilitas terkalibrasi dalam sistem pendukung 

keputusan klinis di dunia nyata tetap memerlukan validasi prospektif dan integrasi dengan 

alur kerja klinis, agar estimasi risiko yang dihasilkan benar-benar selaras dengan pengambilan 

keputusan medis.  
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Kesimpulan 

Penelitian ini membandingkan RF dan XGBoost dalam prediksi risiko diabetes pada 

dua karakteristik populasi, yaitu Pima dan NHANES. Hasil menunjukkan bahwa RF 

memberikan performa precision–recall yang lebih konsisten serta kualitas kalibrasi probabilitas 

yang lebih baik, khususnya pada populasi heterogen. Optimasi ambang berbasis biaya 

terbukti meningkatkan sensitivitas model dan menurunkan total biaya kesalahan klasifikasi 

hingga sekitar 20–25%, meskipun dengan konsekuensi peningkatan FP yang perlu 

dikendalikan. XGBoost menunjukkan keunggulan marginal pada dataset kecil untuk 

kemampuan diskriminasi murni, namun RF lebih stabil dan efisien secara klinis dan 

ekonomis pada skenario skrining populasi besar. Integrasi pembelajaran sensitif-biaya dan 

kalibrasi probabilitas terbukti krusial dalam meningkatkan keterterapan model prediksi 

diabetes sebagai sistem pendukung keputusan berbasis risiko. 

Meskipun hasil penelitian menunjukkan peningkatan performa dan efisiensi biaya, studi 

ini memiliki beberapa keterbatasan. Pertama, penggunaan teknik oversampling seperti SMOTE 

berpotensi menghasilkan sampel sintetis yang tidak sepenuhnya merepresentasikan variasi 

klinis nyata, sehingga peningkatan performa pada data latih perlu ditafsirkan secara hati-hati 

dalam konteks validitas klinis, khususnya ketika model diarahkan untuk aplikasi skrining di 

dunia nyata. Kedua, evaluasi dilakukan secara retrospektif pada dataset sekunder, sehingga 

validitas prediktif model dalam konteks klinis nyata belum dapat dipastikan. Penelitian 

selanjutnya perlu melakukan validasi prospektif serta menguji integrasi model ke dalam alur 

kerja klinis aktual, termasuk penyesuaian ambang keputusan berdasarkan prevalensi lokal dan 

kapasitas layanan kesehatan. Pendekatan ini penting untuk memastikan bahwa model 

prediksi tidak hanya unggul secara statistik, tetapi juga berdaya guna dalam praktik klinis dan 

kebijakan kesehatan masyarakat. 
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