

Application of the Model-Eliciting Activities (MEAs) Learning Model on Mathematics Learning Based on higher-order thinking Skills (HOTS)

Ibnu Imam Al Ayyubi^{1*}, Erina Widiani², Irfan Suryana³, Anita Andriani⁴, Desi Wulan Sari⁵

^{1,4}Sekolah Tinggi Agama Islam Darul Falah, ²Institut Teknologi Bandung, ³Universitas Ahmad Dahlan, ⁵MTs Nurhanifah Buningagara

[1ibnuimam996@staifad.ac.id](mailto:ibnuimam996@staifad.ac.id), [2erinawidiani1@gmail.com](mailto:erinawidiani1@gmail.com), [3hi.irfansuryana@gmail.com](mailto:hi.irfansuryana@gmail.com), [4andriani.anita897@gmail.com](mailto:andriani.anita897@gmail.com), [5wulansarid297@gmail.com](mailto:wulansarid297@gmail.com)

*Correspondence

Abstract

Article Information:

Received February 18, 2024

Revised August 28, 2024

Accepted August 28, 2024

Keyword:

Mathematics, Model-Eliciting Activities, Higher Order Thinking Skills, Learning Outcomes

The MEAs learning model is interactive, utilising technology, simulations, and creative methods to stimulate curiosity in students. This study aims to know whether or not significant differences occur in Mathematics learning by applying the Model-Eliciting Activities (MEAs) learning model based on higher-order thinking Skills (HOTS). Besides that, it is expected to provide a perspective on the effectiveness of the learning model in improving the quality of mathematics learning based on HOTS. This study was conducted at SMPN 1 Wanayasa with a quantitative research approach. The research method was a survey method and one-way ANOVA test analysis to see the relationship between students' learning outcomes of class VIII A, B, C, D, E, and F. The population of this study was students at SMPN 1 Wanayasa with a sample of 191 students of class VIII consisting of 31 students in class VIII A and 32 students in classes B, C, D, E, and F. The results show that students' learning outcomes differ only between classes VIII A and VIII D and between classes VIII C and VIII D.

INTRODUCTION

Developing an effective mathematics learning model is one of the critical aspects of achieving learning and educational goals (Pancawardana et al., 2023). Educators are expected to be able to apply a fun learning model in order to attract students' interest and motivation in learning mathematics because the learning model carried out will significantly determine the learning outcomes of students at the end of the learning process (Murharyana et al., 2023). In other words, learning done with a suitable learning model can positively affect students' learning outcomes (Al Ayyubi & Rohmatulloh, 2023). In addition, gradually training and activating students' non-conventional ways of thinking will support the learning process (Rifanti & Ananda, 2020). The equilibrium can see the accuracy of the learning model of students in responding to learning carried out either explicitly or implicitly (Berlian et al., 2023; Meisya & Arnawa, 2021; Rusliah et al., 2021).

Mathematics learning still has many incompatibilities between the material taught

and the learning model applied (Salafy & Susanah, 2022). It gives less positive causality for students to respond, so they become bored and lack interest in mathematics (Mei et al., 2022; Savitri et al., 2021; Wijayanti et al., 2021). In other words, mathematics is often used as a scourge by students in abstract things that are difficult to understand (Hafiz et al., 2020; Nurhidayat et al., 2023; Sulistyarini, 2022; Zaenuri et al., 2020). One exciting learning model that can be applied to mathematics learning is Model-Eliciting Activities (MEAs), which encourages learning activities in mathematics by stimulating higher-order thinking in students (Auliya et al., 2022). Mathematics education is one of the crucial aspects of constructing skills in higher-order thinking (Ramadhan et al., 2023; Zaeni et al., 2021). Through innovative and evolving approaches, Model-Eliciting Activities are increasingly in the spotlight in mathematics learning based on higher-order thinking Skills (HOTS) (Agusta et al., 2021; Fitri et al., 2022; Niswah, 2022; Ruman, 2020; Wiono & Meriza, 2022). The activities in MEAs learning create a dynamic and challenging learning environment for students and create a nuance for students to engage in a deep and complex thought process.

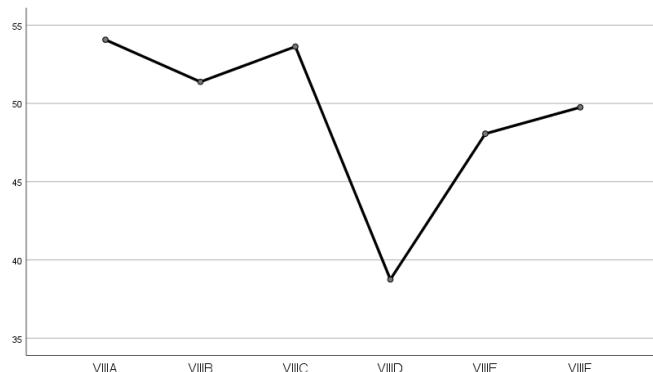
The MEAs learning model is interactive, utilising technology, simulations, and creative methods to stimulate curiosity in students (Ariyanto et al., 2021). In addition, it emphasises the context of problem-solving and critical thinking of students, which can open up the possibility for higher-order thinking skills that have been neglected in mathematics learning (Wilansyah, 2020). In addition, it was found that there is still a lack of studies that examine the correlation between mathematics learning and the MEAs learning model (Susanti et al., 2020; Widayanti, 2021). Utilising the MEAs in the mathematics learning process is hoped to provide students with an inspiring and challenging experience. Moreover, to fill the gaps of the previous studies, in this study, the MEAs learning model is elaborated with students' higher-order thinking Skills (HOTS) to provide alternatives and new perspectives in designing an inclusive mathematics curriculum.

This MEAs learning model can also be adapted to various levels of ability and various learning. Thus, this study aims to see whether or not there is a significant difference in mathematics learning by applying the MEAs learning model based on students' HOTS conducted at junior high schools. In addition, this study is expected to provide a perspective on the effectiveness of applying MEAs in improving the quality of mathematics learning based on HOTS because this research offers novelty with its study in the application of the AEC learning model, which is rarely used in learning and research analysis not only in one or two classes.

METHOD

This research uses a quantitative approach with survey and analysis methods using Analysis of Variance which was carried out at SMPN 1 Wanayasa with a population of 463 students with a sample in this study of 191 students consisting of 31 students in class VIII A, 32 students in class VIII B, 32 students in class VIII C, 32 students in class VIII D, 32 students in class VIII E, and 32 students in class VIII F (Sugiyono, 2021). The

sampling technique used the Slovin formula in the context of cluster area sampling (A. Santoso, 2023). So, this research focuses on the differences and interactions that occur in applying mathematics learning using the HOTS-based MEA model, which provided that the data analysis consists of a data normality test using Kolmogorov Smirnov assisted by SPSS 26. If the data is usually distributed, use a parametric or non-parametric statistical test. Thus, the procedures for this research include formulating a problem by paying attention to the novelty and gaps in existing research, then surveying the field to be able to see the issues with the application of the HOTS-based AEC model, and carrying out data analysis to make conclusions that are inherently based on descriptive and inferential statistics.

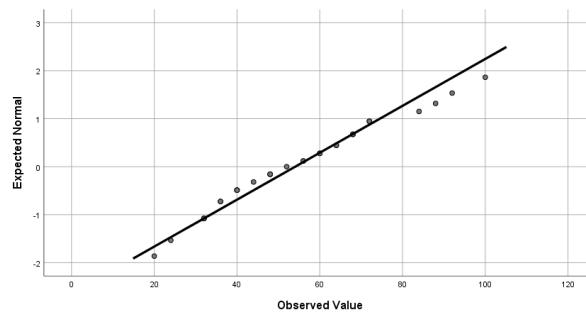
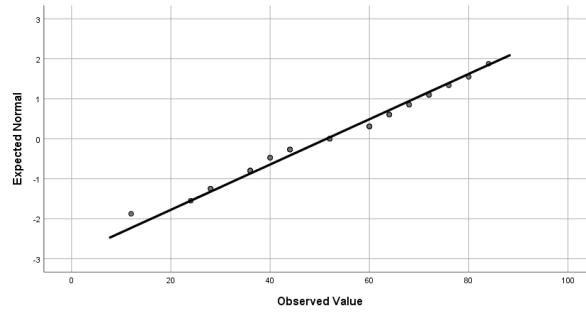
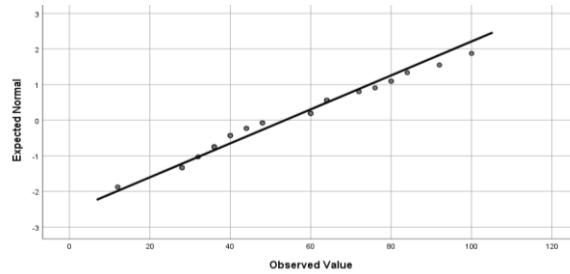

RESULTS

The results show the Alternative Hypothesis (H_1) and Null Hypothesis (H_0) with the test criteria accepting H_0 if the sig value. ≥ 0.05 and reject H_0 if the sig. value < 0.05 is as follows:

Table 1. Descriptives

	N	Mean	Std. Deviation
VIII A	31	54.06	20.471
VIII B	32	51.38	17.659
VIII C	32	53.63	20.967
VIII D	32	38.75	13.984
VIII E	32	48.06	20.525
VIII F	32	49.75	16.317

Based on Table 1 above, it can be known that the number of students in class VIII A is 31 students, with an average score of 54.06 and a standard deviation of 20.471. As for classes VIII B, C, D, E, and F, there are 32 students with an average score of 51.38, 53.63, 38.75, 48.06, and 49.75, and the standard deviation values of the five classes are 17.659, 20.967, 13.984, 20.525, and 16.317.

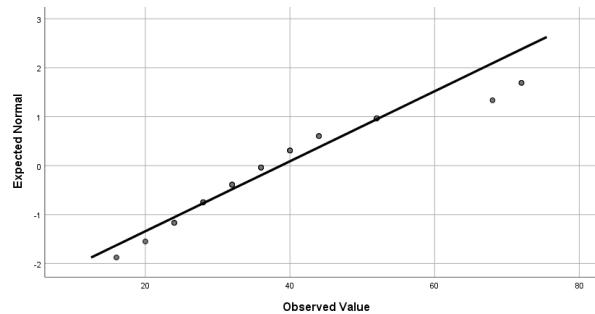
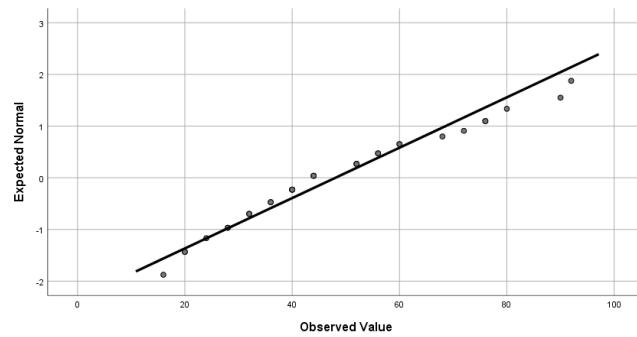
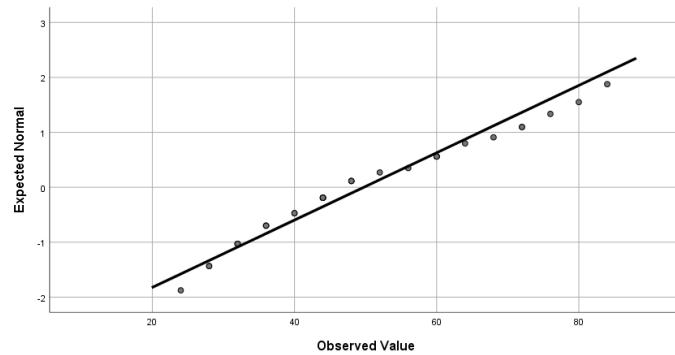



Figure 1. Means Plots

Table 2. Tests of Normality

Kolmogorov-Smirnov ^a			
	Statistic	df	Sig.
VIII A	.109	31	.200*
VIII B	.125	32	.200*
VIII C	.119	32	.200*
VIII D	.152	32	.058
VIII E	.141	32	.106
VIII F	.138	32	.128

Based on Table 2 above, it can be known that the significance values of classes VIII A, B, C, D, E, and F in Kolmogorov-Smirnov are 0.200, 0.200, 0.200, 0.058, 0.106, and 0.128. These data show that the significance value of the six groups is more significant than 0.05. It can be concluded that the data is usually distributed, while the distribution of data from classes VIII A, B, C, D, E, and F can be seen in the Normal Q-Q Figure as follows.

Figure 2. Standard Q-Q Plot of Learning Outcomes of Class VIII A**Figure 3.** Standard Q-Q Plot of Learning Outcomes of Class VIII B**Figure 4.** Normal Q-Q Learning Outcomes of Class VIII C

Figure 5. Standard Q-Q Plot of Learning Outcomes of Class VIII D**Figure 6.** Standard Q-Q Plot of Learning Outcomes of Class VIII E**Figure 7.** Standard Q-Q Plot of Learning Outcomes of Class VIII F

Based on the figures above, it can be known that most of the data on learning outcomes in the MEAs learning model based on students' HOTS in classes VIII A, B, C, D, E, and F are around the diagonal line. It shows that the data is normally distributed. Then, the Homogeneity test is carried out to determine whether the students' learning outcomes data can be collected using the one-way ANOVA or Kruskal-Wallis test.

Table 3. Test of Homogeneity of Variance

	Levene Statistic	Sig.
Based on Mean	2.176	.059
Based on Median	2.037	.075
Based on Mediann and with adjusted df	2.037	.076
Based on trimmed Mean	2.178	.058

Based on Table 3 above, it can be known that the significance value of Based on Mean is 0.059. These data show that the significance value of the six groups based on school origin is more significant than 0.05. It can be concluded that the data is homogeneous. Thus, further hypothesis testing is carried out using parametric statistics, namely the one-way ANOVA test.

Table 4. ANOVA

	Df	F	Sig.
Between Groups	5	2.958	.014

Based on Table 4 above, it can be known that the significance value of Between Groups is 0.014. From this data, it is obtained that the significance value is smaller than 0.05. It can be concluded that there are differences in students' learning outcomes in MEAs learning based on higher order thinking skills between students in class VIII A,B, C, D, E, and F at SMPN 1 Wanayasa. Because H_0 is rejected and H_1 is accepted, it is continued with the post-hoc test on students' learning outcomes in classes VIII A, B,C, D, E, and F.

Table 5. Multiple Comparisons

Class	Class	Mean Difference	Sig.
VIII A	VIII B	2.690	1.000
	VIII C	.440	1.000
	VIII D	15.315*	0.018
	VIII E	6.002	1.000
	VIII F	4.315	1.000
VIII B	VIII C	-2.250	1.000
	VIII D	12.625	.104
	VIII E	3.313	1.000
	VIII F	1.625	1.000
VIII C	VIII D	14.875*	.023
	VIII E	5.563	1.000
	VIII F	3.875	1.000
VIII D	VIII E	-9.312	.681
	VIII F	-11.000	.275
VIII E	VIII F	-1.687	1.000

Based on Table 5 above, it can be known that the significance value between classes VIII A and class VIII B, C, E, and F is more significant than 0.05. The significance value between class VIII B and class VIII C, E and F is more significant than 0.05. The significance value between class VIII C and E and F is more significant than 0.05. The significance value between class VIII D, E, and F is more significant than 0.05. Then, the significance value between class VIII E and class VIII F is more significant than 0.05. A significance value that is less than 0.05 is class VIII A with VIII D and class VIII C with

VIII D. It can be concluded that there is no difference in students' learning outcomes which deal with MEAs in mathematics learning based on HOTS between students in class VIII A and classes VIII B, C, E, F; class VIII B and classes VIII C, E, F; VIII C and classes VIII E, F; VIII D and classes VIII E, F; and class VIII E and class VIII F, while there is a significant difference in students' learning outcomes between class VIII A and VIII D and also class VIII C and VIII D.

DISCUSSION

Based on the explanation of the research results above, it can be known that the sample amounted to 191 students consisting of 31 students in class VIII A and 32 students in classes B, C, D, E, F and obtained an average value of 54.06, 51.38, 53.63, 38.75, 48.06, and 49.75 with standard deviation values of 20.471, 17.659, 20.967, 13.984, 20.525, and 16.317. Moreover, it was found that the significance value in the normality and homogeneity test was more significant than 0.05. Then, one-way ANOVA testing is carried out because the data is usually distributed on Kolmogorov- Smirnov and homogeneous data. In addition, the Normal Q-Q Plot also shows that the data on students' learning outcomes or points are around the diagnostic line, indicating that the data is usually distributed.

In one-way ANOVA testing using the Bonferroni test, it was found that there were differences in students' learning outcomes in MEAs learning based on HOTS between students in classes VIII A, B, C, D, E, and F at SMPN 1 Wanayasa. Thus, the post-hoc test is done, and the difference in students' learning outcomes in the MEAs learning model based on HOTS is only found in class VIII A with VIII D and class VIII C with VIII D, and other these classes showed no difference. This is in line with previous studies by Hartati et al. (2020); Indiyanti et al. (2023); Irwan & Elniati (2021); Mbela et al. (2021); Pahlevi (2021); Roesdiana & Hidayati (2020) on the use of the MEAs model and the emphasis on HOTS-based learning.

Model Eliciting Activities (MEAs) learning models are problem-solving and engineering design tasks that engage students in creating, testing, and refining models to represent and solve complex real-world problems (Susanti et al., 2020). The MEAs learning model is commonly used in educational environments, especially in science, technology, engineering, and mathematics. The primary purpose of the MEAs learning model is to promote critical thinking, problem-solving skills, cooperation, and communication among students (Roesdiana & Hidayati, 2020). The MEAs learning model is designed to go beyond traditional problem-solving exercises by emphasising the importance of creating and refining models to understand and solve complex problems (Chamberlin, 2021).

The MEAs learning model is based on several fundamental principles that aim to enhance students' learning and skill development, which include (1) Problem-Based Learning (PBL), (2) Model-Centric Approach, (3) Iterative Process, (4) Collaborative Learning, (5) Realness; (6) Documentation and Reflection; (7) Advancing Different Viewpoints; (8) Inquiry-Based Learning; (9) Inquiry-Based Learning; (10) Inclusivity;

and (11) Assessment for Learning. MEAs learning model adopts a problem-based learning approach where students are exposed to complex real-world problems. This stimulates critical thinking and motivates students to develop a deep understanding of the material.

The MEA learning model focuses on creating, testing and refining. That is why students solve problems and create visual or conceptual representations reflecting their understanding. They engage in a literary cycle where they create initial models, test them, and refine them based on trial results and feedback. This learning model stimulates continuous reflection and critical thinking in students. In addition, the MEA learning model encourages collaboration and communication among students. The peer review process and class discussions allow them to share ideas, provide feedback, and construct shared understanding.

MEAs learning model creates situations that are authentic and relevant to the real world (Rusliah et al., 2021). This helps students recognise the usefulness and application of the concepts learned in a real-world context. Students are encouraged to document steps, decisions, and changes made based on the model created. This helps understand the concepts and can also construct documentation and reflection skills. The MEA learning model stimulates them to consider multiple viewpoints and approaches. Group discussions and collaboration allow them to see a problem from multiple perspectives.

Then, the MEAs learning model is designed to be accessible to various student backgrounds and ability levels (Meisya & Arnawa, 2021). Creating an inclusive environment ensures that all students can participate and learn. Its assessment is more formative, focusing on understanding the problem-solving process and model development rather than just the result. This provides valuable feedback for students to improve their understanding. By integrating these principles, the MEAs learning model can create an immersive, student-centred learning experience and encourage the development of critical skills that can be applied in daily life.

The stages in the MEAs learning model include a series of steps designed to guide students through problem-solving and model development. The general stages of the MEAs learning model include (1) Problem introduction, (2) Initial model building, (3) Model testing, (4) Reflection and updating, (5) Further testing and improvement, (6) Documentation, (7) Peer review; (8) Collaboration; (9) Final solution; and (10) Class discussion.

The MEAs learning model begins by introducing a complex and exciting real-world problem (Zaenuri et al., 2020). The problem stimulates interest and motivates students to seek a solution. Students are asked to create an initial model representing their understanding of the problem. This demonstration can be in graphs, charts, concepts, or other visual representations. By doing this activity, students test their initial model to see how it can solve a problem or represent a situation correctly. This process involves identifying the strengths and weaknesses of the model.

Based on the results of the tests, students then reflect on the model that has been created. They then make transformative changes or refinements to the model to increase

its effectiveness. The cycle of testing and refinement continues through repeated iterations. Students continue to test, reflect, and update their models until they reach a satisfactory solution. Students regularly document the steps, decisions, and changes they make throughout the process. This documentation includes their understanding of the problem and the reasoning behind each model change. They share their models with peers and provide constructive feedback. Peer review stimulates discussion and allows students to see a problem from multiple perspectives.

Collaborative activities are integrated, allowing students to work together to improve understanding by combining different ideas for a better solution (Al Ayyubi et al., 2018; Al Ayyubi, Dzikri, et al., 2024; Al Ayyubi, Murharyana, et al., 2024; Al Ayyubi, Rohaendi, et al., 2024; Al Ayyubi, Rohmatulloh, et al., 2024; Al Ayyubi & Rohmatulloh, 2023). Students reach a final solution after a series of iterations, tests, and updates. This solution may reflect the student's understanding of the problem and the model representation that is arguably the most effective. The MEAs learning model often ends with a class discussion in which students share their final solutions, insights gained, and experiences throughout the process. This discussion reinforces understanding of the concept and presents an opportunity to reflect together. Through these stages, the MEAs learning model can create an active learning environment, promote critical thinking, and engage students in a more genuine model development process.

High Order Thinking Skills (HOTS) refer to the understanding and application of higher-order thinking skills in thought processes and problem-solving (Niswah, 2022; Ruman, 2020; Sulistyarini, 2022). (HOTS) involves analysing, evaluating, synthesising, and making complex decisions. It is crucial for developing students' independent and analytical thinking in preparing for more complex intellectual challenges in real-world life and future careers. In addition, training in higher-order thinking skills can also help students become lifelong learners and more effective problem solvers.

The development of HOTS has various benefits, including improving problem-solving and decision-making skills, developing critical analysis and evaluation skills, enabling individuals to connect information and understand concepts in depth, encouraging creative thinking, and the ability to think broadly (Yusuf & Ma'rufi, 2022). It is essential to improve critical and analytical thinking, vital skills in education and daily life. The development of HOTS is also considered necessary in the education curriculum because it can help students develop HOTS, which is needed in facing future challenges by applying several contexts in learning, such as (1) Encouraging Critical and Creative Thinking, (2) Improving Analysis and Evaluation Skills; (3) Deepening Concept Understanding; and (4) Encouraging Issue Tackling.

HOTS allows students to be able to think critically and creatively, such as by posing open-ended questions or questions that ask students to make connections between information, develop their ability to think out of the box, generate new ideas, and express themselves creatively, as well as develop problem-solving skills, and think critically through solving problems which are relevant to daily life. By developing HOTS, they can

learn to deeply analyse information and evaluate various concepts, which are essential skills in learning (Rumain, 2020; R. et al., 2020; Widayanti, 2021).

By using HOTS, students can make connections between information, understand concepts deeply, and see the big picture of a topic, which can improve their understanding. Next, it helps students solve problems and develop problem-solving skills in various learning contexts. Thus, HOTS development, integrated into learning, can help students develop skills in understanding, analysing, and critically evaluating information. Moreover, one way to encourage them in order to develop HOTS, especially in critical and creative thinking, is by using strategies that include (1) Encouraging students to ask questions, (2) Using problem-based learning models, and (3) Using HOTS-based questions.

Educators can encourage students to actively ask questions because students who ask questions tend to be ready to explore and find answers. This can help construct students' ability to think critically and creatively (Indiyanti et al., 2023; Risdiana et al., 2022). This learning model allows them to develop problem-solving and critical thinking skills by solving problems relevant to daily life. HOTS-based questions in learning are used to measure students' ability to think critically and creatively. The questions encourage them to exchange concepts, process and apply information, find links from various information, use information to solve problems, and critically examine ideas and information. By applying these strategies, students are expected to have critical and creative thinking skills, essential for facing future challenges.

CONCLUSION

It can be concluded that there are differences in students' learning outcomes by applying MEAs learning based on HOTS between students in classes VIII A, B, C, D, E, and F at SMPN 1 Wanayasa, with an average value of 54.06, 51.38, 53.63, 38.75, 48.06, and 49.75 and standard deviations of 20.471, 17.659, 20.967, 13.984, 20.525, and 16.317 in the six classes. However, the difference only occurs between class VIII A and VIII D and between class VIII C and VIII D, whereas between class VIII A and classes VIII B, C, E, F; class VIII B and classes VIII C, E, F; class VIII C and classes VIII E, F; class VIII D and classes VIII E, F; and between class VIII E and class VIII F there is no significant difference. Thus, for further research, it is suggested that the MEAs learning model based on HOTS be tested in a two-way ANOVA by classifying students' learning outcomes based on gender in order to see further differences in students' learning outcomes that are more elementary.

REFERENCES

Agusta, A. R., Suriansyah, A., & Setyosari, P. (2021). Model Blended Learning Gawi Manuntung untuk Mengembangkan Keterampilan Berpikir Tingkat Tinggi. *Journal of Economics Education and Entrepreneurship*, 2(2), 63–89. <https://doi.org/https://doi.org/10.20527/jee.v2i2.4101>

Al Ayyubi, I. I., Dzikri, M. W. M., Noerzanah, F., Yasmin, S., & Martini, S. (2024). Pengaruh Pembelajaran Problem Based Learning Terhadap Pembentukan Kognitif

Siswa. *Jurnal PGSD UNIGA*, 3(1).
<https://journal.uniga.ac.id/index.php/JPGSDU/article/download/3350/1796>

Al Ayyubi, I. I., Murharyana, M., Azizah, A., Nuroh, A. S., Yasmin, S., & Maulana, C. H. (2024). Pengaruh Model Pembelajaran Kontekstual terhadap Hasil Belajar Siswa di Pondok Pesantren Roudlotul Ulum. *Al-Wasathiyah: Journal of Islamic Studies*, 3(1), 1–13. [https://doi.org/https://doi.org/10.56672/alwasathiyah.v3i1.198](https://doi.org/10.56672/alwasathiyah.v3i1.198)

Al Ayyubi, I. I., Nudin, E., & Bernard, M. (2018). Pengaruh pembelajaran berbasis masalah terhadap kemampuan pemecahan masalah matematis siswa SMA. *JPMI (Jurnal Pembelajaran Matematika Inovatif)*, 1(3), 355–360. <https://doi.org/https://doi.org/10.22460/jpmi.v1i3.p355-360>

Al Ayyubi, I. I., Rohaendi, N., Herdiansyah, R., & Puspita, T. (2024). Implementasi Model Problem Based Learning pada Pembelajaran Matematika. *TadruSuun: Jurnal Pendidikan Dasar*, 3(1), 206–216. <https://doi.org/https://doi.org/10.62274/tadruSuun.v3i1.121>

Al Ayyubi, I. I., & Rohmatulloh, R. (2023). Penerapan Pendekatan Model-Eliciting Activities untuk Meningkatkan Kemampuan Berpikir Kritis dan Kreatif Siswa. *Jurnal El-Audi*, 4(1), 1–12. <https://doi.org/https://doi.org/10.56223/elaudi.v4i1.70>

Al Ayyubi, I. I., Rohmatulloh, R., Suryana, I., & Wijaya, T. T. (2024). Improving Students' Creative Thinking Skills Assisted by GeoGebra Software. *Noumerico: Journal of Technology in Mathematics Education*, 2(1), 23–34. <https://doi.org/https://doi.org/10.33367/jtme.v2i1.4244>

Ariyanto, L., Winarti, E. R., & Rizki, D. (2021). Kemampuan Komunikasi Matematis Ditinjau Dari Disposisi Matematis Siswa Kelas VII Pada Pembelajaran Model Eliciting Activities dengan Performance Assessment. *PRISMA, Prosiding Seminar Nasional Matematika*, 4, 268–274. <https://journal.unnes.ac.id/sju/index.php/prisma/article/view/45049>

Auliya, A. R., Junaedi, I., & Susilo, B. E. (2022). Students' Mathematical Problem Solving Ability in Terms of Independent Learning in the Eliciting Activities Model (MEAs). *Journal of Medives: Journal of Mathematics Education IKIP Veteran Semarang*, 6(2), 58–64. <https://doi.org/https://doi.org/10.31331/medivesveteran.v6i2.2140>

Berlian, M. R. R., Hapizah, H., & Susanti, E. (2023). Case Study: Learning Material-based on Model-Eliciting Activities to Enhance Problem-Solving Abilities and Self Confidence. *Journal of Education and Learning Mathematics Research (JELMaR)*, 4(2), 158–170. <https://doi.org/https://doi.org/10.37303/jelmar.v4i2.120>

Chamberlin, S. (2021). *Statistics for Kids: Model Eliciting Activities to Investigate Concepts in Statistics (Grades 4-6)*. Routledge.

Fitri, R. F. E., Gultom, N. I., & Noviyanti, S. (2022). Penerapan Model Pembelajaran Problem Based Learning Untuk Menumbuhkembangkan Higher Order Thinking Skill Kelas VI Di SDN 29/I Terusan Muaro Sebo Ilir. *Jurnal Pendidikan Dan Konseling (JPDK)*, 4(3), 298–302. <http://journal.universitaspahlawan.ac.id/index.php/jpdk/article/view/4308>

Hafiz, M., Asmar, A., & Yerizon, Y. (2020). The Effect of Problem-Centered Learning (PCL) Approach to Critical Thinking Skills of Class XI MAS Tanah Datar District. *Jurnal Pendidikan Matematika RAFA*, 6(1), 1–14. <https://doi.org/https://doi.org/10.19109/jpmrafa.v6i1.4579>

Hartati, S., Bilqis, R. A., & Rinaldi, A. (2020). Mathematical problem-solving abilities and reflective thinking abilities: The impact of the influence of eliciting activities

models. *Al-Jabar: Jurnal Pendidikan Matematika*, 11(1), 167–178. <https://doi.org/http://dx.doi.org/10.24042/ajpm.v11i1.6709>

Indiyanti, I., Asmarani, D., & Sutopo, S. (2023). Development of hots-based math textbooks to improve critical thinking skills. *Jurnal Math Educator Nusantara: Wahana Publikasi Karya Tulis Ilmiah Di Bidang Pendidikan Matematika*, 9(2), 156–170. <https://doi.org/https://doi.org/10.29407/jmen.v9i2.20033>

Irwan, I., & Elniati, S. (2021). Pengembangan Perangkat Pembelajaran Berbasis Pendekatan Model Eliciting Activities (MEAs) Untuk Meningkatkan Pemahaman Konsep Matematika. *AKSIOMA: Jurnal Program Studi Pendidikan Matematika*, 10(4), 2351–2361. <https://doi.org/http://dx.doi.org/10.24127/ajpm.v10i4.4159>

Mbela, N., Bela, M. E., & Bhoke, W. (2021). Pengembangan Lembar Kerja Siswa (LKS) Berbasis Model Eliciting Activities Pada Materi Segitiga Bagi Siswa Kelas VII SMP. *Jurnal Citra Pendidikan*, 1(1), 70–82. <https://doi.org/https://doi.org/10.38048/jcp.v1i1.136>

Mei, M. F., Wondo, M. T. S., Seto, S. B., & Meke, K. D. P. (2022). Penggunaan Model Eliciting Activities (MEAs) Dalam Meningkatkan Hasil Belajar Ditinjau dari Self-Confidence Pada Materi Aritmatika. *AKSIOMA: Jurnal Program Studi Pendidikan Matematika*, 11(3), 1768–1774. <https://doi.org/https://doi.org/10.24127/ajpm.v11i3.5436>

Meisya, S., & Arnawa, I. M. (2021). The development of mathematical learning devices based on model-eliciting activities and geogebra. *Journal of Physics: Conference Series*, 1742(1), 12034. <https://doi.org/10.1088/1742-6596/1742/1/012034>

Murharyana, M., Al Ayyubi, I. I., Rohmatulloh, R., & Suryana, I. (2023). Behavior Change of Darul Falah Senior High School Students After Attending Tabligh Akbar. *Dirasah International Journal of Islamic Studies*, 1(2), 68–77. <https://doi.org/https://doi.org/10.59373/drs.v1i2.17>

Niswah, D. N. F. (2022). *Hubungan Habits of Mind Matematis dengan High Order Thinking Skills Siswa Kelas IX Madrasah Tsanawiyah*. IAIN KUDUS. <http://repository.iainkudus.ac.id/8773/>

Nurhidayat, W., Surahman, E., & Sujarwanto, E. (2023). The Effect of Conceptual Understanding Procedures Learning Model on Students' Higher Level Thinking Skills. *JPI (Jurnal Pendidikan Indonesia)*, 12(2). <https://doi.org/https://doi.org/10.23887/jpiundiksha.v12i2.58709>

Pahlevi, R. (2021). *Pengembangan Perangkat Pembelajaran Berbasis Pendekatan Model Eliciting Activities (MEAs) untuk Meningkatkan Kemampuan Pemecahan Masalah Matematis Peserta Didik Kelas X SMAN Padang*. Universitas Negeri Padang. <http://repository.unp.ac.id/36492/>

Pancawardana, H., Al Ayyubi, I. I., Rohmatulloh, R., & Murharyana, M. (2023). The Influence of Nonformal Education on Students' Cognitive Formation. *KOLOKIUM Jurnal Pendidikan Luar Sekolah*, 11(2), 236–243. <https://doi.org/https://doi.org/10.24036/kolokium.v11i2.612>

Ramadhan, M. F., Panggabean, E. M., & Irvan, I. (2023). Pengembangan Perangkat Pembelajaran Sistem Koordinat Kartesius dan Vektor Pada Bidang Berbasis Higher Order Thinking Skills dan Technological Pedagogical Content Knowledge. *Jurnal Cendekia: Jurnal Pendidikan Matematika*, 8(1), 62–73. <https://doi.org/https://doi.org/10.31004/cendekia.v8i1.2867>

Rifanti, U. M., & Ananda, R. (2020). Analisis Kemampuan Komunikasi Matematis Mahasiswa pada Aplikasi Graf Menggunakan Pendekatan MEAs. *Jurnal Gantang*,

5(2), 113–121. <https://doi.org/https://doi.org/10.31629/jg.v5i2.2515>

Risdiana, A., Erna, M., & Holiwarni, B. (2022). Pengembangan Soal HOTS (Higher Order Thinking Skills) pada Materi Asam-Basa untuk Kelas XI SMA/MA Sederajat. *Jurnal Inovasi Pendidikan Kimia*, 16(2), 111–117. <https://doi.org/https://doi.org/10.15294/jipk.v16i2.32879>

Roesdiana, L., & Hidayati, N. (2020). Pembelajaran dengan Model Eliciting Activities (MEAs) untuk Meningkatkan Kemampuan Penalaran. *JUMLAHKU: Jurnal Matematika Ilmiah STKIP Muhammadiyah Kuningan*, 6(2), 166–175. <https://doi.org/https://doi.org/10.33222/jumlahku.v6i2.1018>

Rumain, M. (2020). *Analisis High Order Thingking Skill (HOTS) Siswa Dalam Menyelesaikan Soal Persamaan Kuadrat Kelas IX-IPA SMP Negeri 11 Seram Bagian Timur (SBT)*. IAIN Ambon. <http://repository.iainambon.ac.id/1969/>

Rusliah, N., Handican, R., Deswita, R., & Oktafia, M. (2021). Mathematical problem-solving skills on relation and function through Model-Eliciting Activities (MEAs). *Journal of Physics: Conference Series*, 1778(1), 12016. <https://doi.org/10.1088/1742-6596/1778/1/012016>

Salafy, Y. W., & Susanah, S. (2022). Perbandingan Literasi Matematika Siswa Kelas VIII SMP Dalam Pembelajaran Model Eliciting Activities (Meas) Dan Pembelajaran Konvensional. *MATHEdunesa*, 11(1), 302–310. <https://doi.org/https://doi.org/10.26740/mathedunesa.v11n1.p302-310>

Santoso, A. (2023). Rumus Slovin: Panacea Masalah Ukuran Sampel? *Suksma: Jurnal Psikologi Universitas Sanata Dharma*, 4(2), 24–43. <https://doi.org/https://doi.org/10.24071/suksma.v4i2.6434>

Santoso, R. M., & Setyaningsih, N. (2020). Literasi matematika siswa dalam menyelesaikan soal HOTS bentuk aljabar berdasarkan kemampuan matematika. *Prosiding Konferensi Nasional Penelitian Matematika Dan Pembelajarannya*, 62–71. <https://proceedings.ums.ac.id/index.php/knppmp/article/view/1892>

Savitri, M. D., Sudiarta, I. G. P., & Sariyasa, S. (2021). Pengaruh MEAs berbantuan Geogebra terhadap Kemampuan Pemahaman Konsep dan Disposisi Matematika Siswa. *JIPM (Jurnal Ilmiah Pendidikan Matematika)*, 10(2), 243–255. <https://doi.org/http://doi.org/10.25273/jipm.v10i2.9240>

Sugiyono. (2021). *Metode Penelitian Kuantitatif Kualitatif dan R&D*. Alfabeta.

Sulistyarini, O. E. (2022). *Pengaruh Kompetensi Pendidik (TPACK) dan High Order Thinking Skill terhadap Kemampuan Belajar Dan Inovasi Peserta Didik*. UNS (Sebelas Maret University). <https://digilib.uns.ac.id/dokumen/detail/93616/>

Susanti, E. S., Waluya, S. B., & Masrukan, M. (2020). Analysis of Creative Thinking Ability Based on Self-Regulation in Model Eliciting Activity Learning with Performance Assessment. *Unnes Journal of Mathematics Education Research*, 9(2), 208–215. <https://journal.unnes.ac.id/sju/index.php/ujmer/article/view/34021>

Widayanti, V. M. (2021). Application of Discovery Learning Model to Improve Students Ability in Solving Math Problems in HOTS Category. *International Conference on Educational Studies in Mathematics (ICoESM 2021)*, 221–225. <https://doi.org/10.2991/assehr.k.211211.037>

Wijayanti, S., Triyono, T., & Syaifuddin, M. W. (2021). Penggunaan Model-Eliciting Activities (MEAs) Untuk Meningkatkan Kemampuan Berpikir Reflektif Pada Pembelajaran Geometri Transformasi. *JURNAL E-DuMath*, 7(1), 1–5. <https://doi.org/https://doi.org/10.52657/je.v7i1.1330>

Wilansyah, I. Z. (2020). *Kemampuan Berpikir Kritis dengan Model Pembelajaran*

Model-Eliciting Activities (MEAs) Berbantuan LKPD pada Materi Fungsi untuk Peserta Didik Kelas X MA Almaarif Singosari Tahun Ajaran 2019/2020. <https://repository.unisma.ac.id/handle/123456789/1218>

Wiono, W. J., & Meriza, N. (2022). Environmental Issues-based Discovery Learning to Enhance Metacognitive Awareness and Students' Higher-Order Thinking Skills. *Tadris: Journal of Education and Teacher Training*, 7(1), 35–45. <https://doi.org/10.24042/tadris.v7i1.10464>

Yusuf, I., & Ma'rufi, N. (2022). Pendekatan STEM untuk Meningkatkan Kemampuan Berpikir Kritis dan Motivasi Belajar Siswa pada Pembelajaran Matematika. *Kognitif: Jurnal Riset HOTS Pendidikan Matematika*, 2(1), 26–40. <https://doi.org/https://doi.org/10.51574/kognitif.v2i1.404>

Zaeni, A., Rahayu, W., & Makmuri, M. (2021). Pengembangan Instrumen Self Assessment Technological Pedagogical Content Knowledge (TPACK) Calon Guru Matematika Berbasis HOTs. *Teorema: Teori Dan Riset Matematika*, 6(1), 59–68.

Zaenuri, Z., Jati, S., Asikin, M., Kehi, Y. J., & Hapsari, P. (2020). The Effectiveness of Model Eliciting Activities with Ethnomathematics on Students' Mathematical Communication Capabilities. *Proceedings of the 5th International Conference on Science, Education and Technology, ISET 2019, 29th June 2019, Semarang, Central Java, Indonesia*. <https://doi.org/http://dx.doi.org/10.4108/eai.29-6-2019.2290332>