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 Cryptography plays a crucial role in protecting the data from 

unauthorized access. Nowadays, various cryptographic algorithms are 

used. It is not meant for information technology to secure the 

proposed work's primary target to achieve these tasks and goals. 

Using a literature review, we study security information systems using 

S-Boxes. In the research, we discuss two different techniques to 

generate the new S-boxes and then discuss their other properties to 

improve the strength of encryption. This chapter is further divided 

into sections that comprehensively explain the various concepts. 

 

INTRODUCTION  

1.1 Fundamental Algebraic concepts 

This section is further divided into many subsections which explain the fundamental 

algebraic concepts, including group, ring, field, vector space, affine space, symmetric 

group, etc. Further, the Galois field, substitution boxes, and group action are also 

explained in detail, which is most important for our dissertation.  

Binary operation 

Definition 1: Let a set 𝑀 ≠ ɸ and ‘𝑔’ be a mapping such that  𝑔: 𝑀 × 𝑀               𝑀 

then ‘𝑔’ is called a binary operation if 𝑀 is closed under the operation ‘𝑔.’ In 

mathematical notation, 

𝑔(𝑝, 𝑞) = 𝑝𝑔𝑞Ɐ, p ,𝑞 ∈ 𝑀 

https://doi.org/10.33367/jtme.v2i1.
mailto:1penulis1@email.ac.id
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Example 1: “+” addition is a binary operation for the non-empty sets ℤ, ℝ, ℚ, and 

ℂ. These sets are closed under addition. 

Remark 1: If we divide one integer by another integer, then the result would not 

necessarily be an integer, so the division is not a binary operation. 

Algebraic Structure  

Definition 2: A set 𝐵 ≠ ɸ is called an Algebraic structure if it has at least one binary 

operation. 

Groupoid 

Definition 3: If closed under that binary operation, a set 𝐴 ≠ ɸ with a binary operation is 

called groupoid. 

Example 2:  i. (ℝ, +) under addition set of real numbers 

            ii. ( ℚ, +) under addition set of rational numbers 

            iii. (ℂ, +) under an addition set of complex numbers 

Semigroup 

Definition 4: A groupoid 𝐴 ≠ ɸ is called a semigroup if it satisfies the associative property 

under the same binary operation. Mathematically, 

𝑎*( 𝑏 ∗ 𝑐) =     (𝑎* 𝑏) ∗ 𝑐     Ɐ  𝑎 , 𝑏, 𝑐∈ A 

Example 3:ℤ, ℝ, ℚ, and ℂ are semigroup under the binary operation multiplication and 

addition. 

Remark 2: ℤ The set of integers is not semigroup under the binary operation division. 

Monoid 

Definition 5: A semigroup(𝑆,*) is called a monoid if it has the identity under the same 

binary operation. Mathematically,   

s*e = s =e*s          Ɐ  s ∈𝑆 

Example 4: The set of rational, real, and complex integers are monoid under the binary 

operation “+” and “.” 

Remark 3:  The set of natural number is not monoid under “+”.  

 

1.1.1 Group 

Definition 6: If each element in the monoid (𝐺,*) has the inverse, then the set is known 

as a group. It means for  

Mathematically, 

𝑠ɛ G   ⱻ  𝑠′∈ G such that 

𝑠*𝑠′ =  𝑠′*𝑠 = e          Ɐ s ∈ G where e is identity. 

Example 5: ℝ, ℚ and ℂ are groups under multiplication and additionwith identity 1 and 

0 respectively. 

Remark 4: In the set of integerℤ each element is not invertible under the binary operation 

multiplication soℤ is not a group. 

Similarly under the binary operation “.” and “+” respectively {1} and {0} are trivial 

group. 

Remark 5: In a group, the identity and inverse of each element are always unique. 

Subgroup 
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Definition 7: A subset𝑆 ≠ ɸof group G with binary operation “*” is known as subgroup 

if S is also subgroup under the binary operation “*” which has the set G. 

Example 6:  The set of integer ℤ is a subgroup under the binary operation “+” ℝ, ℚ, and 

ℂ. 

Remark 6: Every group G has two trivial subgroups {e} and {G} itself. 

Abelian group 

Definition 8: A group G is called an abelian group with binary operation “*” if “*” is 

commutative. Mathematically,  𝑔1 ∗ 𝑔2  =  𝑔2 ∗ 𝑔1 , Ɐ   𝑔1, 𝑔2 ∈ G 

Example 7:   i. ℚ, the rational numbers 

                      ii. ℝ, the real numbers 

                     iii. ℂ, the complex numbers 

are the abelian group under multiplication 

Remark 22: 𝑀𝒏(ℝ) Matrices having entries from the set of real numbers called the real 

matrices. It forms the non abelian group under the binary operation multiplication. 

Cyclic group 

Definition 9: If a group G is generated by a single element of G, then G is known as 

cyclic. If G is cyclic under addition, we represent it mathematically, 

G = ‹𝑔› = {n𝑔: n ∈ℤ} 

And if G is a cyclic group under multiplication, then we write it as, 

G = ‹𝑔› ={𝑔𝑛:  n ∈ℤ} 

Example 8: let G be the set of nth root of unity, then G is called a cyclic group and 

denoted by  

G = ‹w› = {1, w, 𝑤2,…, 𝑤𝑛−1} where 𝑤𝑛=1 

Remark 7: The order of the cyclic group and its generator are equal, and the subgroup’s 

order and the element’s order divide the order of the group. 

Remark 8: The set of integerℤ has two generators under addition 1 and -1.So ℤ is an 

infinite cyclic group under addition and the group of prime order is always cyclic. 

 

1.1.2 Ring 

Definition 10: A set R ≠ ɸ with two binary operations “+” and “.”  is known as a ring if 

it satisfies the following properties which are given below. 

i- R is an abelian group under the operation “+” 

ii- R is semigroup under the operation “.” 

iii- “+” is distributive over “.” 

Example 9:  The set of integer ℤ is a ring under the binary operation which is mentioned 

above. 

Example 10:  The set of rational numbers ℚ is a ring under the binary operation which is 

mentioned above. 

Example 11:  The set of real numbers ℝ is a ring under the binary operation, which is 

discussed above. 
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Example 12: The set of complex numbers ℂ is a ring under the above mentioned binary 

operation. 

Example 13: Similarly, 𝑀𝑛(ℝ), 𝑀𝑛(ℤ), 𝑀𝑛(ℚ), and 𝑀𝑛(ℂ) are the example of rings. 

Example 14: ℤ𝑛and nℤare also the example of a ring. 

Commutative Ring 

Definition 11: A ring R is said to be a commutative ring if “.” is commutative. 

Example 15: The set of integers forms a commutative ring. 

Example 16: ℝ, ℚ, and ℂ are examples of commutative rings. 

Remark 9: 𝑀𝑛(ℝ), 𝑀𝑛(ℤ), 𝑀𝑛(ℚ), and 𝑀𝑛(ℂ) are the examples of non–commutative 

ring. 

Ring having identity 

Definition 12: A ring R is known as a ring with identity if R contains the multiplicative 

identity. 

Mathematically,  a.1 =1.a = a, Ɐ a∈ 𝑅 

Example 17: (ℤ, +, .)is a ring with identity. 

Example 18: (ℚ, +, .) is a ring with identity. 

Example 19: (ℝ, +, .) is a ring with identity. 

Example 20: (ℂ, +, .) is a ring with identity. 

Remarks 10: nℤ where n>1 is a ring without identity. 

Subring 

Definition 13: A subset S ≠ ɸ of a commutative ring Ris called a subring of Rif it fulfills 

the following conditions. 

i- If   𝑟, 𝑡∈ S then 𝑟 − 𝑡 ∈ S 

ii- If   𝑟, 𝑡∈ S then 𝑟𝑡∈ S 

iii- 1 ∈ S 

Example 21: ℤis a subring of ℚ . 

Example 22: ℚis a subring of ℝ. 

Example 23: ℝ is a subring of ℂ. 

Example 24: nℤis a subring of ℤ. 

 

1.1.3 Field 

Definition 14: A set F which is non emptyis known as a field if it satisfies the properties 

which are given below. 

i- (𝐹,+) is abelian group . 

ii- 𝐹 - {0} form a multiplicative group. 

iii- Distributive law holds multiplication over addition, i.e 

𝑝(𝑞 + 𝑟) = 𝑝𝑞 + 𝑝𝑟                   Ɐ  𝑝, 𝑞, 𝑟∈𝐹 

Example 25: ℝ is a field. 

Example 26: ℚ is a field. 

Example 27: ℂ is a field.  

Remark 11: The set ℤ𝑛 = {0, 1, 2, … , 𝑝 −1} is a field where 𝑝 is any prime number. 
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In cryptography, we always prefer to choose field having finite elements called finite field 

or Galois field. The total number of elements in the field is known as order of the field. 

Finite field or Galois Field 

Definition 15: A field in which the number of elements is finite, is called finite field or 

sometimes called Galois field in which we can subtract, add, multiply and invest. If this 

finite field has p elements then we write it as 𝐺𝐹(𝑝). 

Example 28:ℤ5 = {0, 1, 2, 3, 4} is a finite field having five elements. 

Remark 12: A real field is an infinite field. 

Theorem 1: A finite field having order m occurs if m is a power of a prime. i.e m =𝑝𝑛 

for some positive integers n and prime number p and p is known as characteristic of the 

finite field. There does not exist finite field of order 24 since 24 = 23.3 so 24 is not the 

power of a prime. 

Prime field  

Definition 16: The prime order’s fields are the most important and vital in the algebraic 

system. The field’s elements 𝐺𝐹(𝑝) can be shown by integers 0, 1, 2, 3, … 𝑝 − 1. 

Theorem 2: Let 𝑝 be a prime number and the integers ring 𝑍𝑝is represented by 𝐺𝐹(𝑝). 

This is said to be a prime field or Galois field having a prime number of elements. Also 

the elements other than zero of the field have their inverses. 

 

1.1.4 Vector Space 

Definition 17: Let 𝑉 be set which is non empty and 𝐹is a field then 𝑉is known as Vector 

Space if the below mentioned conditions are satisfied. 

i- 𝑉is abelian group under addition. 

ii- 1(𝑚 + 𝑛) = 1𝑚 + 1𝑛        Ɐ  l ∈𝐹 and 𝑚, 𝑛∈ 

iii- (𝑠 + 𝑡)𝑚 = 𝑠𝑚 + 𝑡𝑚        Ɐ 𝑠, 𝑡∈𝐹 , 𝑚 ∈𝑉 

iv- 𝑠(𝑡𝑚) = (𝑠𝑡)𝑚       Ɐ 𝑠, 𝑡∈𝐹, m ∈𝑉 

v- 1.m = m.1 = m       Ɐ 1 ∈ F, m ∈ V, 1 is identity under multiplication. 

Example 29: The set 𝑀𝑛 of all matrices of ordern is known as vector space over 𝐹. 

Example 30: For a field the set 𝐹𝑛 = {(𝑥1,𝑥2, 𝑥3, …,𝑥𝑛)}/𝑥𝑖ɛ F, 1 ≤ I ≤ n} is a vector 

space. 

Subspace 

Definition 18: The non empty subset 𝑊is called subspace of a vector space 𝑉 if 𝑊is also 

a vector space under the same operation defined in 𝑉. 

Theorem 3: A non empty subset 𝑊 ≠ ɸ of a vector space 𝑉is called subspace if and only 

if  

i- 𝑤1 ,𝑤2∈𝑊  then    𝑤1 + 𝑤2∈𝑊 

ii- 𝐼𝑓 𝑝∈𝐹 and 𝑤 ∈ W  then 𝑝𝑤 ∈ W 

Remark 13: Vitself and {0} are subspaces of   𝑉, called the trivial or improper subspaces 

of   𝑉. 
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Example 31: 𝑁 =  {
0 
𝑥
𝑦

  Where𝑥, 𝑦 ∈ℝ, is a subspace of   ℝ3. 

Linear Transformation  

Definition 19: Let 𝑊 and 𝑉 over the same field 𝐹are two vector spaces then 𝑠from 𝑊to 

𝑉is called linear transformation if it satisfies the properties which are mentioned below. 

i- 𝑠(𝑢 + 𝑣) = 𝑠(𝑢) + 𝑠(𝑣) 

ii- 𝑠(𝑝𝑢) = 𝑝𝑠(𝑢)where𝑝 is a scalar. 

Example 32: The transformation 𝑠(𝑥, 𝑦) = (2𝑥, 𝑦 − 𝑥) is linear transformation. 

Affine Transformation  

Definition 20: A set 𝐸having vector space properties and mapping 𝑓 such that  

𝑓: 𝐸×𝐸             𝐸 

𝑓(𝐴, 𝐵) = 𝐴𝐵 

Remark 14: Chasless relation explain direction 

                    𝐴𝐴=0             and          𝐴𝐵 = −𝐵𝐴 

Remark 15:  Every vector space is affine space. 

Permutation 

Definition 21: Let 𝑌 = {1, 2, 3,…,n} and then 𝑓:𝑌        𝑌  be the collections of all bijective 

mappings are called permutation. 

Symmetry 

Definition 22: It is a transformation which acts upon the objects and leaves it apparently 

unchanged. 

Symmetric Group 

Definition 23: If   𝑋= {1, 2, 3, … 𝑛} then the collection of all permutation of this set 𝑋 

is known as the symmetric group and denoted by 𝑆𝑛 

Remark 16: 𝑆𝑛contains the n! 

Remark 17: 𝑆3is the symmetry of equilateral triangle. 

Group Action 

Definition 24: Let 𝐺 be a group and 𝑌 be a set along with rule which associates every 

element   𝑝∈𝐺 and 𝑦∈𝑌to an element𝑝𝑦∈𝑌 such that the following conditions are 

satisfied. 

i- 1.𝑦 = 𝑦             Ɐ  𝑦∈ Y         

ii- 𝑠, 𝑡∈𝐺 and   y ∈ Y  such that 

(𝑠𝑡). 𝑦 = 𝑠. (𝑡. 𝑦) 

If such an association exists we say that 𝐺 is acting on Y and this association is called 

group action. 

Example 33:  The group of permutation of n objects if  𝑝∈𝐺and 𝑦∈ Y such that 

𝑝.y = 𝑝(y) 

Example 34: Gis any group Y = 𝐺, define action such that 𝑔.y = 𝑔y𝑔−1 then 𝐺 is acting 

by conjugation onto itself. 

Stabilizer 
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Definition 25: Let G be a group which is acting on the Ythen stabilizer of y ∈ Y is defined 

as  

𝐺𝑦 = {  𝑔∈G :  𝑔. 𝑦 = 𝑦 }  

 

1.2 Fundamental cryptographic concepts 

Now we shall discuss basic terms related to cryptography which are useful and important 

for understanding the main idea of cryptography and also very important for the proposed 

work in the coming chapter. Now we shall explain some basic definitions related to 

cryptography. 

Plaintext 

Definition 26: The original text or message through which one person wants to 

communicate with the other person is termed as plaintext. It may be a word file, numerical 

data, audio file or video file and denoted by M. 

Example 35: “please give me a glass of water” is a word file which is a plaintext. 

Ciphertext 

Definition 27:  The text or message which cannot understand by any one or meaningless 

is known as ciphertext. The original message is transformed into a message which cannot 

be readable in cryptography. It is denoted by C. 

Plaintext Alphabets 

Definition 28: The alphabets or characters are used in plaintext is known as plaintext 

alphabets. These may be numerical data, English alphabets or symbols etc. 

Ciphertext Alphabets 

Definition 29: The alphabets or characters which are used to convert the message from 

plaintext to ciphertext are known as ciphertext alphabets. These may be different from 

original alphabets. 

Cipher  

Definition 30: The process through which a readable message can be converted into 

unreadable text or meaningless form is known as cipher. It may be substitution or 

transformation and known as cipher substitution or cipher transformation. 

Key 

Definition 31: When the sender sends a text, he also sends some extra information so that 

receiver used this information or code to read the ciphertext which is known as the key. 

In other words, the key is some rules which are used during the encryption and decryption 

by sender and receiver. It is denoted by K. 

Encryption 

Definition 32: The process through which the plaintext is converted into ciphertext is 

known as encryption. In cryptography, there are used some encryption techniques to send 

the confidential message from an insecure system. For encryption there are two main 

requirements; 

 An algorithm 

 Key 
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A sender uses it to encrypt the plaintext. 

Encryption Algorithm 

Definition 33: The process or mathematical process through which we convert the 

plaintext into unreadable and meaningless form is called encryption algorithm. It is used 

by a sender to encrypt the plaintext into ciphertext. 

Decryption 

Definition 34: The process through which the unreadable and meaningless ciphertext 

convert into plaintext is said to be decryption. Decryption is the alter process of 

encryption. This process is used on the receiver side to decrypt the meaningless message 

to plaintext. The process of decryption has two requirements; 

 Secure algorithm            

  Key 

Decryption Algorithm 

Definition 35: The process or mathematical process that converts the unreadable or 

meaningless message into readable text (plaintext) is known as decryption algorithm. In 

other words, these are techniques which are used in decryption. 

It will be cleared from the below image: 

Figure 1.  A complete cipher 

 

1.2.1 Cryptology and its classification 

Cryptology 

Definition 36: Cryptology is the branch of science related to information security. This 

word is derived from the Greek word kryptos, means hidden so Cryptology is the study 

of secret message. 

Classification of Cryptology 

Cryptology is further divided into two main branches; 

 Cryptography 

 Cryptanalysis 
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Cryptography 

Definition 37: It is the study of the method of transforming a secret message such a way 

that only the authorized person can understand it. 

Cryptanalysis 

Definition 38: It is the branch which deals to break the cryptosystem. It is referred to as 

“breaking the code”. 

 

1.2.2 Purpose of Cryptography 

Cryptography plays a vital role to achieve the security goals to make sure the privacy of 

the secret data from the unauthorized channel. It has wide use in daily life now a day due 

to high security advantages. 

The various goals of cryptography are given below. 

Confidentiality 

To make sure that the secret data in the computer is disseminated and can be accessed 

only the unapproved party or channel and not by the unauthorized party. 

Authentication  

The information or data which is accepted by any system or party to be checked whether 

the data received from an authorized party or a wrong party. 

Integrity 

Only the certified person or channel is allowed to change the given text or message, no 

one can alter the message between the sender and receiver. 

Non Repudiation  

It will ensure that neither the receiver nor the consigner (sender) of a message can deny 

the transmission. 

Access Control 

Only the authorized party can access the confidential data or secret information. 

 

1.2.3 Classification of Cryptography  

Cryptography is further divided into two main categories; 

 Symmetric key cryptography  

 Asymmetric key cryptography 

Symmetric Key Cryptography 

In such type of cryptography, encryption and decryption both have the same key, as 

shown in the following Fig. 
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Figure 2. Symmetric Key Cryptography 

In such a type of cryptography, the key plays a vital role in the data's security depending 

on the key's nature and length. There are various symmetric algorithms: DES, TRIPLE 

DES, and AES. It is further divided into two subclasses; 

 Block Cipher  

 Stream Cipher 

Block Cipher 

It is a symmetric key algorithm which is used for encryption. It is mapping which maps 

n bits of plaintext to n bits of cipher text where n is known as block length or key length. 

It is usually known as a simple substitution cipher with a large block size. 

Stream Cipher 

This cipher is also a symmetric key encryption system. It is an essential kind of encryption 

algorithm. It usually works on a smaller part of the information as compared to the block 

cipher, which works on a large block of information. It is normally faster than the block 

cipher in hardware and has less complex hardware circuitry. It may also be advantageous 

in such situations where transmission errors are primarily probable. 

 

1.2.4 Asymmetric key cryptography 

Asymmetric key cryptography or public key cryptography is cryptography which has a 

pair of keys which are used to decrypt and encrypt the data to make the algorithm more 

secure. In this type of cryptography, there are two disparate keys that are used to encrypt 

and decrypt the given data, as shown in Fig. 3 
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Figure 3. Asymmetric key cryptography 

The symmetric key does not replace it. An example of such type cryptography is elliptic 

curve cryptography. 

 

1.2.5 Theory of S-Box 

In the following section, we will discuss the substitution boxes(s-boxes). The main task 

of S-box theory is to help in the research work to achieve the goals and dissertations. 

Substitution Box (S-box) 

In cryptography, an S-box is the important and basic component of the symmetric key 

process through which substitutions are made. Such block ciphers are used to develop the 

correspondence between the cipher text and key.  

What is an S-box? 

The S-Boxes are basically Boolean functions from {0,1}𝑚      {0,1}𝑛  m×n mappings. 

Thus, this can be explained as there are n components mapping, each being connected 

from m bits to 1 bit; in another sense, each component mapping is a Boolean mapping in 

m Boolean variable. 

 

1.2.6 Balanced Function 

A Boolean mapping is considered balanced if the number of zeros and ones are the same 

in the truth table in counting. The Hamming weight of this binary sequence is how many 

ones in number.  

Properties of good S-box: 

 Balanced Component mapping               

 The non-linearity of the Component should be very high.  

 The Non-zero linear combinations of Component mapping should be highly non-

linear and balanced.  

 The s-boxes should be highly algebraic degree. 
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1.2.7 Substitution –Permutation Network (SPN) 

Product Cipher 

Definition 94: Two or more transformation get together in a cipher to make new cipher 

which is analogously (comparatively) more secure than the separate ciphers is known as 

product cipher.  

Definition 95: Permutation is the substitution of the sequence of the element of the text 

by the sequence of these elements which are permuted. There are no addition and 

subtraction of the elements. We just reshuffle the elements. 

Substitution Network 

Definition 96: The substitution network or SP network is the product of two or more 

ciphers. There are used a chain of functions related to mathematics are used in this 

algorithm. In these algorithms, there are used S-boxes and P boxes for substitution and 

permutation. 

 

1.2.8 Block cipher and advanced encryption standard 

Many cryptographic algorithms have been proposed, but AES is the latest and 

most secure crypto algorithm. This cryptographic algorithm used permutation operations 

to make information more secure. We now briefly describe the cryptosystem approved 

for general standards and technology (NIST). The Advance Encryption Standard (AES) 

was adopted and effective on May 26, 2002. The Advance Encryption Standard (AES) is 

also known as the Rijndael Algorithm. It was offered by two cryptographers from 

Belgium, Joan Daemen and Vincent Rijmen, who submitted this proposal to NIST while 

selecting AES. The AES was developed to replace two currently existing standards, DES 

(Data Encryption Standard) and Triple DES because these two standards were no longer 

secure cryptosystems. Therefore, it was necessary to phase out the DES and adopt a more 

secure encryption standard. For this algorithm, NIST selected three members of the 

Rijndael family, each with a block size of 128 bits but with different key lengths of 128, 

192, and 256 bits. The key space size in AES is 2128, or approximately 3.4×1038.  This 

number is so large that the fastest “Cracker Machine” available would take trillions of 

years to crack the AES code by doing an exhaustive key search.  

Therefore, AES is expected to remain a secure cryptosystem for many years to 

come. The enciphering algorithm in AES was developed by two cryptographers, Dr. Joan 

Daeman and Dr. Vincent Rijmen from Belgium, and was given the name Rijndael. The 

basic structure of this algorithm is that of an iterated block cipher but with some additional 

steps. We now discuss briefly the Rijndael algorithm in AES. There are several versions 

of the Rijndael algorithm in AES; there is a difference in the block/key length and the 

rounds in numbers. The possible values for the key length are 256, 192, and 128 bits. 

Similarly, the number of rounds can be 8, 10 or 12. There are a few steps: 

 Round key addition 

 S-bit substitution 

 Permutations 

 Row shift operation 
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 Column mix 

AES algorithm can be understood by the following diagram: 

Figure 4. AES Algorithm 

1.3 Some Historical Ciphers 

Ciphers play a vital role in the field of cryptography. There are different ciphers which 

are used in cryptography depend on different algebraic structures like groups, rings and 

fields. Here we discuss some historical ciphers in detail with examples. 

 

1.3.1 Process of Transforming a Message 

Basically, there are two ways to transform the message in cryptography. One is called 

transposition and other is called substitution. Here we shall discuss those substitution 

methods especially those that employ algebraic techniques and make use of the algebraic 

system like fields and rings. The general principle involved in the substitution method is 

to select a permutation 𝑓 of the set of letters in the alphabets and replace each letter 𝑥 in 

the message by 𝑓(𝑥). 

Suppose we want to send a message to a friend that  

ALGEBRA IS GREAT FUN;   Plaintext 

Since we don’t want that an unauthorized recipient can know this message, we decide to 

send the message in secret form. Let us take 𝑓 to be the permutation given by table 2.1; 

for each letter 𝑥 in the top of the row, 𝑓(𝑥) is the letter directly below 𝑥. 
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Table 1. Fixed Table for Cipher 

 

 

Replacing each letter in the message by 𝑓(x) without blank spaces we transform the 

original message to 

NQCKFDNLHCDKNOSXT ; Cipher-text 

We send this message to our friend who has been already provided the secret key in 

advance. Our friend can recover the message by replacing the letter 𝑦 in the received 

message by   𝑓−1(𝑦). But the unauthorized person who does not aware the secret key, he 

can’t find out the original message. It looks that one can try all the possible permutations 

to find out the meaning full message and such a process to breaking the code is known as 

exhaustive key search. But the number of permutation in the set of 26 English alphabets 

is equal to   

    26! = 403291461126605635584000000 ≈ 4×1026 

This number is so large that it is very hard to find out all possible permutations. If our 

enemy can take one second for one permutation it will take 1019 years to go through all 

the permutations. So it is not an easy task to find the exhaustive key. It is clear from the 

above discussion that it is computationally infeasible to break the code by selecting all 

the permutation but still there are available such type of computers which find out the 

original message in the short interval of time from the ciphertext. It is required that build 

up such algebraic system like rings and fields to make the system more secure. Before 

discussing the algebraic methods in which simple algorithm is used which needs no 

abstract.                     

                

1.3.2 Caesar Cipher 

This is a mono alphabetic cipher. It works by arranging the alphabet around a circle as 

shown in figure 2.2. If we shift each letter forward by k places in the circle we get the 

resulting permutations called the k length cycle shift and such type of enciphering in 

which cycle shifting is used called the Caesar cipher. The actual cipher which was used 

by Caesar with cyclic shift k = 3. In such type of cyclic shifting letter, we shift A to D, B 

to E and so on. It is shown in the figure below completely, 

A B C D E F G H I 

N F P R K S C E L 

J K L M N O P Q R 

A J Q G T B I M D 

S T U V W X Y Z  

H O X Z V Y U W  
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Figure 5. Caesar cipher with k = 3 

In the form of table, we can make the arrangement of alphabets as 

Table 2.  Caesar cipher with k = 3 

A B C D E F G H I 

D E F G H I J K L 

J K L M N O P Q R 

M N O P Q R S T U 

S T U V W X Y Z  

V W X Y Z A B C  

 

Example 36: Encipher the plaintext “HARD WORK IS KEY TO SUCCESS” 

Using Caesar cipher with k = 3 

Solution: We use the key k = 3 for enciphering as shown in above table 2.3, by 

substituting each alphabet in the plaintext by the alphabet below it. By converting all the 

alphabets of the plaintext we obtain the ciphertext 

KDUG ZRUN LV NHB WR VXFFHVV 

As a result, we obtain the text which is meaningless. We can decipher this meaningless 

text by replacing each letter in the text by the letter above each one. As a result, we obtain 

the original plaintext 

HARD WORK IS KEY TO SUCCESS. 

 

1.3.3 Vigenere Cipher  

We now explain a periodic substitution cipher composed of shifts ciphers. This cipher is 

called Vigenere cipher named after Claise de Vigenere, a cryptologist of the 16th century. 

This cipher with period p and key sequence (𝑘1 , 𝑘2, 𝑘3 ,…, 𝑘𝑝) . It is simple to identify 

the shift cipher by the letter which moves to A. For example, the letter A for key cipher 
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with k = 3 is D. The word formed by this cipher is called Vigenere cipher. Each letter in 

the key word, the table contains the each row with one alphabet. The letter below the A 

forms the cipher. It is given below the table 2.4 with key word TASK. 

Table 3. Vigenere cipher with key word Task 

A  B  C  D  E   F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z

U  V  W  X  Y  Z  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T 

B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y   Z  A

T  U  V  W  X  Y  Z  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S

L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  A  B  C  D  E  F  G  H  I  J  K  

Example 37: Encipher the given plaintext using the Vigenere cipher with key word 

TASK. 

I MISS YOU 

Solution: To encrypt the plaintext we follow the following procedure, we see the each 

word in the sentence, and for example the first word I in the message is replaced with the 

letter c and similarly M the second letter in the second word is replaced by G and I is 

replaced by J, and continuing this procedure we get the cipher text 

C GJLD SPN 

We obtain a text which is meaningless. Similarly, we can decipher the message by taking 

key word in reverse direction and in this way obtain the original message which is  

I  MISS YOU 

 

1.3.4 Modular Enciphering and Affine Cipher 

Let n be the number of characters in the message alphabet A. Let S = ℤ𝑛 be the ring of 

integers modulo n. The enciphering in which algebraic operations of ℤ𝑛 are used is called 

modular enciphering. An affine cipher is the simplest example of modular ciphering. 

     Let a, b ∈ℤ𝑛 and suppose 𝑎 is co prime to 𝑛. Then 𝑎 has inverse in ℤ𝑛. Hence the 

mapping ɸ:ℤ𝑛          ℤ𝑛 

                                               ɸ (𝑥) = 𝑎𝑥 + 𝑏                                               (2.2) 

It is a bijective mapping. The mapping in the can be express as the operations of 

multiplication and addition in ℤ𝑛 is given by 

ɸ (𝑥) = 𝑎𝑥 + 𝑏       mod n                                          (2.3) 

Where x mod n represent the remainder left by dividing by n. For deciphering, we use the 

inverse mapping which is given by         

  ɸ−1(𝑦) =  𝑎−1(𝑦 − 𝑏) =  𝑎−1𝑦 − 𝑎−1𝑏                    (2.4) 

For every 𝑦 ∈ ℤ𝑛 If the plaintext alphabets A is the set of alphabets A, B, C, …, Z then n 

= 26. We take the mapping   ɸ: A            B as shown in table 4 
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Table 4.  Affine cipher 

 

 

 

 

 

 

 

 

 

Example 38:  Use the mapping ɸ given above and the affine cipher 

ɸ(x) = (5x + 5)   mod 26                               (2.5) 

and for deciphering the mapping 

ɸ(x) = (7x + 4)  mod 26                                 (2.6) 

1. To encipher ALGEBRA. 

2.  To decipher AMEQMNZW. 

Solution: As 5 is co-prime to 26 therefore, ɸ is bijective. 

1. Replace each letter in the plaintext by a number which is shown above in the 

table and then applying the mapping ɸ. We write the alphabet relate to ɸ(x). It is 

completely described in table 5. 

    Table 5. Enciphering process 

 

Plaintext         A        L       G       E      B      R    A 

𝑥                  1        12    7     5     2   18   7 

     5 𝑥 +5                  10        65    40   30   15   95    40 

   5 𝑥 + 5 mod 26    10         13   14     4   15    17    14 

     Cipher-text            J           M       N      D    O     Q     N 

 

2.  To decipher the text we use the inverse mapping  ɸ−1.If 7x + 4 = y then x  

=7−1(𝑦 − 4). In  ℤ26 , = 7−1 = 15 as 15 × 7 = 105 = 1 (mod 26) so  for 

deciphering the mapping  is d(y) = 15y – 60 = 15y + 18. The deciphering 

process is given below in table 2.6 

 

 

 

A B C D  E F G H I 

1 2 3 4 5 6 7 8 9 

J K L M N O P Q R 

10 11 12 13 14 15 16 17 18 

S T U V W X Y Z  

19 20 21 22 23 24 25 0  
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Table 6. Deciphering procedure  

Ciphertext                  A         M           E        Q       M        N        Z         W 

y                                1       13          5        17     13       14      0          23  

15y + 18                     33     213       93    273     213   228     18       25 

15y+ 18 mod 26             7         5         15        13        5      20      18     25 

Plaintext                            G        E           O          M         E        T        R      Y 

                                      

1.3.5 Hill Cipher 

We now discuss the importance of the affine cipher which is called as Hill Cipher. Let n 

be the number of alphabetic letters and r be any positive integer such that 𝑟 ≥ 1. Then the 

mapping 𝑓: A           ℤ𝑛 which can be extended to 𝑓:𝐴𝑟         ( ℤ𝑛)𝑟  by defining the mapping  

ɸ (𝑏1, 𝑏2, 𝑏3, … 𝑏𝑟) = (ɸ(𝑏1), ɸ((𝑏2), ɸ((𝑏3), …, ɸ((𝑏𝑟))             (2.7) 

Let us denote the elements of ( ℤ𝑛)𝑟as columns and let ( ℤ𝑛)𝑟×𝑟 denote the set of  𝑟 × 𝑟 

matrices having entries from  ℤ𝑛. If M is invertible then 

(det 𝑀) (𝑑𝑒𝑡𝑀−1) = det( 𝑀 𝑀−1) = det 𝐼 = 𝐼                          (2.8) 

Therefore det 𝑀 is an invertible element in ℤ𝑛. In the other direction ifdet 𝑀 is 

invertible in  ℤ𝑛 then 𝑀−1 is given by  𝑀−1 = (det 𝑀)−1𝑎𝑑𝑗𝑀 

Therefore we can say that a square matrix M over ℤ𝑛 is an invertible if det 𝑀  is co-

prime to 𝑛. 

If M be a matrix whose inverse exist in   ℤ𝑛 and D ∈( ℤ𝑛)𝑟. Then the mapping  

ɸ(𝑋) = 𝐾𝑋 + 𝐷     ;             Ɐ ∈(ℤ𝑛)𝑟                                    (2.9) 

This is called Hill Cipher. To decipher we use the inverse direction  

ɸ−1(𝑌) =  𝑀−1(𝑌 − 𝐷)                                                      (2.10)   

Example 39:  Use the Hill cipher with n = 26 and r = 2 

ɸ[
𝑥1

𝑥2
] =  [

8 5
5 6

] [
𝑥1

𝑥2
] + [

7
9

]    (mod 26)                                             (2.11) 

1. Encipher the word MOUNTAIN  

2. Decipher the word AJGLLRKE 

Solution: We firstly verify that det[
8 5
5 6

] = 23 is co-prime to 26. We divide the word 

into blocks of two letters. We represent each block by the number of columns given by 

the mapping 𝑓 and then apply the mapping ɸ. This enciphering process is given by. 

 

Table 7. Deciphering Algorithm 

     Plaintext        MO          UN        TA         IN 

[
𝑥1

𝑥2
] [

13
15

] [
21
14

] [
20
1

] [
9

14
] 

   ɸ[
𝑥1

𝑥2
] [

4
8

] [
11
16

] [
16
11

] [
19
8

] 

Ciphertext           DH          KP          PK        S                                                                                                                                        
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In ℤ26(𝑑𝑒𝑡𝑀)−1 =  23−1 = 17. Therefore 𝑀−1 = 17 [
6 −5

−5 8
]= [

24 19
19 6

]. 

To decipher the message the following mapping is used. 

ɸ−1 [
𝑦1

𝑦2
] = [

24 19
19 6

] ([
𝑦1

𝑦2
] − [

7
9

])                                     (2.12) 

 

METHOD 

The literature review is very important and vital not only to connect the conceptual ideas 

with handy examples and applications. It provides the light for the role of a research study 

and this study is linked to secure communication. So in this chapter fundamental 

background is lighted by stating important results in numbers. Therefore literature review 

plays a vital role in the field of a research study. 

 

RESULT AND DISCUSSION 

A. REVIEW OF S-BOX THEORY 

2.1 Rijndael Algorithm 

Belgian cryptographers Daemen & Rijmen, (1999) designed a new algorithm for 

enciphering. It is known as Rijndael algorithm. There are several versions of Rijndael in 

AES; they differ in key length, block, and number of rounds. The possible values for this 

block length and the key length are 256, 192, and 128 bits. It is a substitution-permutation 

network (SPN) with 14, 12, and 10 rounds, depending on the size of the key. As 

mentioned earlier, the general scheme of Rijndael is like an iterated block cipher.  

There are several operations that are used in Rijndael; 

 Round key addition  

 Byte substitution  

 Row shift 

 Column mix 

The detailed discussion is presented in Daemen & Rijmen, (1999). 

 

2.2 Polynomial Description of AES 

Rosenthal (2003) explained the complete Rijndael Advance Encryption Standard 

in the sense of a complete polynomial description, which was taken for selection by the 

National Institute of Standard and Technology (NIST), and it described the structure of 

S-boxes. It also shows how the whole algorithm can be described in a finite ring through 

a sequence of algebraic manipulation. In Rosenthal (2003), it was explored that 

description relates to the Algebra of substitution box, so-called ‘S-Box’ and the most 

important non-linear part of the AES system. The sparse polynomial explained the S-box.  

 

2.3 Action of Symmetric Group 𝑺𝟖 on AES S-box 

Hussain et al., (2010) described a new 𝑆8 S-box which is made by acting 

symmetric group 𝑆8 on AES S-box and these obtained S-boxes are used to 
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construct4032040320 secret key. Thus in this way, we obtain the encryption keys with the 

permutations of these existing S-boxes which give 40320 new S-boxes which improve 

the security and system become more reliable and safe. In Hussain et al., (2010)  it is 

explained that how we construct the new S-boxes, there are several steps which are used 

to construct the  𝑆8 S-box; 

 Conversion hexadecimal to decimal 

 Conversion decimal to binary 

 Acting 𝑆8on the elements of AES S-box 

 Conversion to decimal   

There are 40320 elements in symmetric group 𝑆8, acting all the elements on AES S-box 

we get newly  𝑆8 AES S-boxes whose nonlinearity is same as the original one.  

Actually, on the elements of the AES S-box we act the symmetric group 𝑆8 and we 

reshuffle the elements of the S-box. Here the elements of 𝑆8 are permutations which are 

acting on the binary digits and permute the original elements. 

Here is the example of 𝑆8 AES S-box whose nonlinearity is same as the original one. 

Table 8. 𝑆8 AES S-box 

 

2.4 Image Encryption 

(Hussain et al., 2012) described with the help of two basic and key concepts image 

encryption: one is the theory of replacement or substitution, permutation network and the 

other is called Chaos theory. Furthermore, it is analyzed the proposed algorithm’s strength 

by applying it on a color image and derive that the color image can be encrypted through 

the algorithm successfully and it makes secure and safe against many classic attacks. In 

Hussain et al., (2012) he demonstrates that chaotic  

209 118 215 243 91 241 243 204 18 128 213 177 127 207 185 87

105 9 232 246 123 226 197 90 188 78 25 189 46 28 83 72

159 254 139 21 23 183 223 108 22 156 220 218 210 106 146 134

4 205 145 201 34 15 132 43 133 3 8 89 249 149 27 214

160 137 52 35 163 117 99 24 67 179 79 155 176 217 181 12

195 202 0 252 16 126 154 227 113 233 63 178 97 100 98 237

74 253 57 251 193 228 147 140 196 250 1 247 66 54 175 56

194 153 64 173 11 174 50 222 62 31 107 144 2 255 219 75

236 36 131 124 231 143 68 135 76 157 119 182 84 230 162 211

80 136 229 110 17 49 10 40 69 125 58 6 111 103 161 235

88 19 51 33 224 5 20 102 73 203 60 81 138 142 92 242

221 104 151 244 172 206 101 184 116 71 94 121 212 115 61 32

59 114 148 53 38 29 30 77 120 238 86 167 225 190 169 41

82 55 158 85 96 129 95 37 208 150 199 186 13 200 166 47

216 122 42 130 240 234 45 14 171 39 141 248 109 198 48 239

44 152 168 164 191 93 65 112 192 170 180 165 26 70 187 7
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encryption system is not secured and it can attack easily, So in order to improve the 

security he offered to adopt the non-linear functions, limited in time and space to alter the 

key continuously 

 

2.5 Permutation properties 

Beth & Ding, (1994) explained the vital permutation’s properties which one can 

use in secure key block cipher as a round function to secure it from different attacks. Good 

nonlinearity and high order of several classes of almost complete nonlinear permutations 

and other permutations in GF(2)𝑛 are presented. In Beth & Ding, (1994) key and basic 

properties of APN permutation network are highlighted, in this way we obtained highly 

nonlinear S-boxes. 

 

2.6 Analysis of S-box 

Hussain et al., (2011) divided the work into two sections, 1st section represents 

the analysis of S-box and bit independent criterion, their nonlinearity etc. whereas 2nd 

section represents conclusion. It is also analyzed against different criterions such as bit 

independent criterions, differential approximation probability and linear approximation 

probability; in the view of this work by linear fractional transformation we can construct 

new s-boxes. 

 

2.7 Analysis of residue prime S-box 

Hussain et al., (2011) made some useful efforts to analyze the S-box which is 

based on the residue of a prime number, which includes differential approximation 

probability (DP), bit independent criterion (BIC), linear approximation probability (LP) 

and non-linearity. With the help of these results, we derive the result which is linked with 

the algebraic encryption strength and weakness of this S-box. In Hussain et al., (2011) 

they analyzed S-box for different criteria and derived that the residue prime S-box is not 

satisfied all criteria absolutely.   

 

2.8 Construction of S-boxes using projective general linear group 

Altaleb et al., (2017) have developed new techniques to construct highly non-

linear S-boxes. Firstly, they used the action of 𝑃𝐺𝐿(2, 𝐺𝐹(28)) on the Galois field of 256 

elements and then use permutations to construct new kind S-boxes. They computed the 

strength of these S-boxes and made some useful analysis. They compared these S-boxes 

with the well known existing S-boxes and show that the analysis of these S-boxes is 

comparatively better. By the action of the projective general linear group, they 

constructed 16776960 numbers of S-boxes. 

 

2.9 Cryptographic criteria of Boolean functions 

It was studied the mathematical and practical cryptographic criteria of Boolean 

functions in Elhosary et al., (2013) introduced the algorithm that fulfills the criteria and 

introduced the Boolean functions that satisfy the better cryptographic criteria. The 
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Boolean function representation and cryptographic assessment were presented in 

Elhosary et al., (2013). It was beginning of cryptographic algorithms and opened the new 

door for the analysis and further, studied the Hash function. 

 

2.10 Matrix manipulation of cryptographic functions 

Some efforts were made to investigate the matrix manipulation of cryptographic 

functions in Meletious et al., (2015). Firstly, considered the cryptographic repeated 

applications of orbit and found difficult to derive the cryptographic functions which are 

related to the orbit’s length. They investigated the behavior of matrix’s power which is 

made from the generator of the multiplicative group of several primes 𝑝in ℤ𝑝. It was 

studied matrix factorization approach at the end in (Meletious et al., 2015) 

 

2.11 A method to construct S-boxes based on permutations 

In a block cipher, S-boxes are very important nonlinear components. The 

nonlinearity makes the system more safe against the differential and linear cryptanalysis. 

These S-boxes are key dependent. In Kazlauskas et al., (2016) simple four algorithms are 

presented to construct the S-boxes which are based on the key dependent. Kazlauskas et 

al., (2016) presented eight distance metrics for the analysis of these key dependent S-

boxes. In the last section of K. (Kazlauskas et al., 2016), they experimentally investigated 

the quality analysis of these key dependent S-boxes. These S-boxes can be used in block 

cipher like AES cipher. It was studied that by changing the secret key, the order of the 

elements of the S-boxes based on key dependent are also changed. 

 

2.12 Construction of  𝑺𝟏𝟔 AES S-boxes 

As earlier some efforts are made to construct the 𝑆8 S-boxes by the action of 

symmetric group 𝑆8 and constructed 40320 newly 𝑆8 S-boxes as the order of the 

symmetric group in Hussain et al. (2010). In Siddiqui et al., (2016) used the action of  𝑆16  

instead of  𝑆8 to construct the new 𝑆16 S-boxes and generate new 16!(20922789888000) 

S-boxes as the order of the symmetric group 𝑆16.  At the end finally, they analyzed the 

strength of the proposed S-boxes by different properties like balance properties, 

nonlinearity, bijection, bit independent criterion and linear approximation probability etc. 

These S-boxes are used to develop 𝑚16! secret keys which are used to make the system 

more reliable and secure. One of the advantages of AES algorithm using 𝑆16 S-boxes 

gives more reliable keys as compared to the algorithm using in 𝑆8S-boxes. 

 

2.13 Construction of large cryptographic S-boxes 

It is clear that large S-boxes have better cryptographic properties than the smaller 

S-boxes. The main target is to achieve the large S-boxes with bent functions. In Detombe 

& Tavares, (1992) constructed 5×5 S-boxes with the required bent function. Whenever, 

these variables are odd in numbers then they have desired cryptographic properties and 

can be constructed easily. These newly constructed S-boxes fulfill the criterion of good 

S-boxes. Bent function plays key role to achieve the maximum nonlinearity. 
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2.14 Improvement in cryptographic properties of AES S-box by multiplication 

Many cryptographic algorithms have been proposed but AES is the latest and 

secure crypto-algorithm. This cryptographic algorithm used permutations operations to 

make information more secure. We now give a brief description of the cryptosystem 

approved for general standards and technology (NIST). It is called the Advance 

Encryption Standard (AES) and was adopted and effective on May 26, 2002. Florin 

Medeleanu, CiprianRacuciu and Marius Rogobete studied the chances to improve the 

cryptographic properties of AES algorithm in Medeleanu et al., (2015) and effect of these 

improvements. It is also described that all the cryptographic properties could not improve 

at the same time. 

 

2.15 Construction of S-boxes for lightweight block cipher 

During the study of different techniques for the construction of S-boxes, it is 

derived that there is some space for the improvement in the cryptographic properties. H. 

Mhajloska & Gligoroski (2011) made some useful efforts by using Quasigroup of order 

4 to construct new cryptographic S-boxes in (Mhajloska & Gligoroski, 2011). Further, it 

has opened new door to construct new S-boxes which are satisfied the criterion for the 

good S-box. They also compare the properties of these constructed S-boxes with the well 

known existing S-boxes. 

 

2.16 Affine-power Affine S-box 

Cui & Cao (2007) studied the algebraic and polynomial structure of the AES S-

box and derive that only 9 terms are involved for algebraic expression, while 255 terms 

for the inverse S-box. They presented new affine-power-affine S-box to improve the 

algebraic complexity. The algebraic complexity improves of AES S-box from 9 to 253 

while for the inverse 255 remain same. They compare the properties of this affine-power-

affine S-box with the well known S-boxes and derived that this S-box fulfills the criterion 

for the good S-box. 

 

2.17 Linear cryptanalysis method for DES cipher 

M. Matsui derived a new technique for cryptanalysis of DES cipher, which is a 

well known plaintext attack. It is possible to break 8 rounds with 222 and 16 rounds with 

247 plaintext. We can apply this method on any situation as described in Matsui (1994). 

It was studied that these attacks for the ciphertext can deal with any non-random situation 

at any stage 

  



S M Nazmuz Sakib | Analysis of Fundamental Algebraic Concepts … 

68 | Noumerico: Journal of Technology in Mathematics Education 

The deciphering process is given below in the table completely 

Table 9. Hill Deciphering procedure. 

 

Ciphertext              AJ            GL          LR            KE         

[
𝑦1

𝑦2
] [

1
10

] [
7

12
] [

12
18

] [
11
5

] 

ɸ−1 [
𝑦1

𝑦2
] [

5
22

] [
5

18
] [

5
19

] [
20
0

] 

Plaintext                       EV            ER         ES          TZ 

                    

B. CONSTRUCTION OF 𝑺𝟖RESIDUE PRIME AND AFFINE AES S-BOXES 

Rijndael Block Cipher is based on 128 bits and developed by two cryptographers, 

Joan Daemen and Vincent Rijmen, was taken on Advanced Encryption Standard (AES) 

by (NIST) on October 2, 2000. AES is one of the most reliable algorithms which are used 

in cryptography of symmetric key. The S-box has a vital role in AES, therefore most of 

the work is focused on the battlement of the S-boxes. In this section, we represent new 𝑆8 

S-boxes by using action of 𝑆8 on residue prime S-box as earlier some efforts were made 

(Hussain et al., 2010). Furthermore, we utilize these S-boxes to construct 4032040320 

secret keys from 𝑆8 S-boxes and then we utilize these keys and propose a new algorithm 

which is more reliable when two channels or persons communicate each other. S-box is 

the only non-linear component which provides confusion capability for AES. 

 

3.1 Algebraic Expression of Residue Prime S-box 

The expression for residue prime s-box is obtained from the function in GF(28) . 

As GF(28) is a finite field, therefore inverse with respect to multiplication of every 

element exists and 0             0. This inversion of multiplication for the function is as 

follows 

𝐹(𝑥) =        𝑥−1   

0
𝑥≠0
𝑥=0

 

This affine transformation which can be decomposed into two steps: 1. The linear 

transformation 𝐿(𝑥) 

𝑦 = 𝐿(𝑥) 

And the proposed implementation depends on the residue of a prime number and 

the complete entries in S-box are 256. These entries are the residue of 257, there is logic 

behind the choice of the number 257 because the residues from 1 to 255 have unique 

inverses. Furthermore, these residues can be utilized in all block size of AES. 
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3.2 𝑺𝟖 residue prime S-boxes 

Firstly, we perform the action of 𝑆8 on the original residue prime S-box as the new 

S-boxes was developed on similar action on AES S-box (Cui & Cao, 2007) and 

sequentially construct 40320 new residues prime S-boxes. This process is preceded with 

the conversion of the elements into bytes and the elements in bytes are permuted by the 

action of the symmetric group 𝑆8 which gives 40320 new S-boxes. For the formation of 

new S-boxes, the resulting algebraic expression is 

𝑓:  𝑆8× residue prime S-box           𝑆8 S-boxes 

In this way, the number of total new S-boxes is 40320 due to an order of the 

symmetric group because we are acting the elements of symmetric group 𝑆8 on the 

elements of S-box. 

Table 10. Action of 𝑆8 on residue prime S-box 

𝜋1((𝑆𝑏𝑜𝑥 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑝𝑟𝑖𝑚𝑒) = 𝑆𝑏𝑜𝑥1 

𝜋2((𝑆𝑏𝑜𝑥 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑝𝑟𝑖𝑚𝑒) = 𝑆𝑏𝑜𝑥2 

… …                   … 

… …                   … 

… …                   … 

𝜋40320((𝑆𝑏𝑜𝑥 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑝𝑟𝑖𝑚𝑒) = 𝑆𝑏𝑜𝑥40320 

                             

Where  𝜋1, 𝜋2, 𝜋3,…, 𝜋40320 are the elements in 𝑆8. In this algorithm, the 

elements of original residue prime S-box is converted into binary form and then applying 

the action of symmetric group 𝑆8 we get the 40320 new 𝑆8 residue prime S-boxes. This 

process can be presented as follows   

 

Table 11.  Algorithm for 𝑆8 S-boxes 

 

 

 

 

 

  

 

Residue prime S-box 

Convert elements of residue prime S-boxes into bytes 

                                      Acting 𝑆8on these elements 

                                      We get 40320 new 𝑆8 S-boxes 
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An example to construct new 𝑆8 residue prime S-boxes from the main S-box is 

shown in table 2.12 

Table 12. An example of bijective 𝑆8 S-boxes 

 

3.3 Generating Affine AES S-box through affine mapping 

We introduce the affine mapping between byte and the AES S-box. In this case, 

we firstly convert the elements of the S-box into binary digits and then develop a relation 

between byte and all the elements of residue prime S-box. So we define a mapping 

between two bytes such as 

𝑓: (10101010)             (11111111)  

We define an affine mapping between the each binary pairs of the bytes, in the 

above case we get the result (01010101). After converting all the elements through such 

type of affine mapping we convert all these bytes into decimal. Here we generate new S-

box through affine mapping of the byte (10101010) and the elements of AES S-box and 

by changing the byte we can generate finite many S-boxes. Also we develop an algorithm 

to construct all possible 256 AES S-boxes having pseudo code is given below. 

 

  

0 2 130 105 194 91 23 163 210 196 184 183 169 177 197 116

242 118 88 217 101 50 237 189 71 68 102 221 90 195 60 203

246 168 190 215 49 136 179 162 46 147 166 9 95 20 111 159

153 42 24 125 158 82 123 243 179 244 209 62 45 55 216 89

254 107 69 213 239 170 249 186 38 150 65 36 181 251 198 248

171 154 225 80 206 127 3 66 180 37 40 226 176 164 228 29

99 58 135 139 33 44 63 10 235 152 178 250 188 208 245 28

229 120 124 25 114 137 175 57 15 34 173 140 113 236 51 106

255 1 156 205 26 143 122 83 240 241 199 81 119 160 231 138

142 27 234 11 18 74 12 96 110 21 252 193 218 223 117 121

204 157 227 22 86 98 48 222 219 70 192 253 129 56 146 31

108 85 14 52 5 75 214 191 100 212 76 7 92 17 43 187

149 8 167 46 201 211 200 47 6 77 13 133 144 104 131 238

220 103 97 145 230 161 247 84 253 232 112 141 126 207 41 72

94 4 53 202 61 172 35 148 182 185 67 19 224 155 39 174

132 32 134 59 79 87 73 78 54 16 93 233 165 64 151 128
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 Pseudo Code 

1-fetch data from AESSbox.txt to work on and store in an array 

2- loop on  this array  

    2.1 convert each element to binary 

3- Get a random value r from converted binary elements 

4-Permenute each element of array with r 

    4.1 Loop on each array element 

          4.1.1 Split each element to array 

          4.1.2 Loop on this sub_array 

          4.1.3 Perform permute step that is subtract each subvalue of sub_array with every 

value of random number (r) binary 

 4.1.4 save result in permute variable 

      4.2 Save permute variable in permuted_array 

5- Convert permuted_array back to decimal 

6- Write permuted_array on file(data.txt) using file operations 

 Flow Chart 

The flow chart of the above Pseudo is given below which elaborate the complete 

algorithm which consist of the following three steps. 

 Step 1 
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 Step 2 

 

 Step 3 
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3.4 Analysis of 𝑺𝟖 residue prime S-boxes and affine S-boxes 

We discuss most important ordinary properties which are founded in disparate S-

boxes to improve the strength of this recommended algorithm.  

 

3.4.1 Algebraic complexity 

The algebraic complexity of 𝑆8  residue prime S-boxes is the same as the AES in 

T. Beth and C. Ding (1994). We are acting 𝑆8on the original S-box where the elements of 

𝑆8are permutations and these permutations do not affect the S-box’s algebraic 

complexity. In the case of affine S-boxes we are developing the affine mapping between 

the fixed byte and the original S-box where this fixed byte reshuffle the elements of S-

box just like permutations. These bytes do not affect the algebraic complexity of S-box. 

 

3.4.2 𝑺𝟖 S-boxes and affine S-boxes are Bijective 

In the Galois field GF(28) if we consider the input to all the elements of S-box, 

then the output takes the unique values in GF(28). The example of bijective affine S-box 

is given in table 2.13 below. 

                                            Table 12.  Affine AES S-box 

  

156 131 136 132 13 148 144 58 207 254 152 212 1 40 84 9

72 125 54 130 5 166 184 15 62 43 93 80 99 91 141 63

72 2 108 217 201 192 8 51 203 90 26 14 142 39 206 234

251 56 220 60 231 105 250 101 248 237 127 29 20 216 77 138

246 124 211 229 228 145 165 95 173 196 41 76 214 28 208 123

172 46 255 18 223 3 78 164 149 52 65 198 181 179 167 48

47 16 85 4 188 178 204 122 186 6 253 128 175 195 96 87

174 92 191 112 109 98 199 10 67 73 37 222 239 0 12 45

50 243 36 19 160 104 187 232 58 88 129 194 155 162 230 140

159 126 176 35 221 213 111 119 185 17 71 235 33 161 244 36

31 205 197 245 182 249 219 163 61 44 83 157 110 106 27 134

24 55 200 146 114 42 177 86 147 169 11 21 154 133 81 247

69 135 218 209 227 89 75 57 23 34 139 224 180 66 116 117

143 193 74 153 183 252 9 241 158 202 168 70 121 62 226 97

30 7 103 238 150 38 113 107 100 225 120 22 49 170 215 32

115 94 118 242 64 25 189 151 190 102 210 240 79 171 68 233
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3.4.3 Nonlinearity 

Nonlinearity’s upper bound is 𝑁(𝑓) = 2𝑛−𝐼 − 2
𝑛

2
−𝐼

 for S-box in GF(28).As the 

elements of S-box are in GF(28), 120 is the optimal value of N. Through Walsh 

Hamamard transform of Boolean function we calculate the nonlinearity. The 𝑆8 residue 

prime S-box is not entirely a non linear function and its nonlinearity is remained same 

99.5 as the original residue prime S-box whereas the nonlinearity of affine AES S-box is 

decreased by 110.875 as the original AES S-box has 112. 

 

3.4.4 Balance Property 

A Boolean function𝑓𝑛:𝑍2
𝑛                𝑍2   is known as balance function if 

 # {𝑥| (𝑥) = 0} = #{𝑥|𝑓(𝑥) = 1} or 𝐻𝑊(𝑓) = 2𝑛−1. The main feather of this property is that 

with higher the magnitude imbalance of a function, moreover due to this property we 

obtained a high probability linear approximation. Thus, due to imbalance property 

Boolean function becomes weak for linear cryptanalysis. Like AES and 𝑆8AES S-boxes, 

all the Boolean functions 𝑓𝑖𝑖 = 1,2,3,…,8 used in the structure of the Affine and 𝑆8residue 

prime S-boxes fulfill the criteria of balance property. Hence, our S-boxes are balanced.  

 

3.4.5 Bit independence criterion  

In cryptographic output bits independence criterion plays very vital role. It needs 

pair wise all the avalanche variables however given set’s independent of avalanche 

vectors. The avalanche vectors are constructed by the complementing of a single plaintext 

bit. The main results of BIC analysis of proposed affine S-box are presented in Table 

2.15. The BIC of this affine S-box is acceptable as compare with the other S-boxes in the 

regard of encryption strength. So our S-box is comparable by analysis. It satisfies bit 

independent criterion as presented.  
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Table 13. Performance Indexes for S-box based on action of S8 on residue Prime 

 

Analysis Max. Min. Average Square 

Deviation 

The 

differential 

approximation 

probability  

The linear 

approximation 

probability 

Nonlinearity 104 94 99.5    

SAC 0.671875 0.34375 0.516846 0.0331112   

BIC  94 102 3.5051   

BIC- SAC  0.46875 0.502511 0.0180058   

DP     0.273438  

LP 162     0.136719 

 

3.4.6 Linear approximation probability  

We examine the variation of an event in the LP. This amount play key role in 

determining the maximum imbalance value for the output in an event. The two masks 𝛤𝑥 

and 𝛤𝑦 which are used to link of the input bits and output bits. The LP is also expressed 

as  

𝐿𝑃 = max  ⎹ {
#{x|x.Γx = S(x).Γy

2𝑛 } -
1

2
⎹ 

Where all inputs contains in set X and total elements are 2𝑛. The LP result of this 

affine S-box is presented in table 15. 

 

3.4.7 Differential approximation probability  

The nonlinear transformation should be unique and lies in their differential 

uniformity which is essential quality. The output differential 𝐷𝑦𝑖 maps by an input 

differential 𝐷𝑥𝑖which assure that uniformity in function probability for each. The DAP 

of affine S-box is measured and expressed as:  

𝐷𝑃𝑠 (∆𝑥 → ∆𝑦) = [
# {x ∈ X|S(x) ⊕ S(x ⊕ ∆x) = ∆y}

2𝑚
]  

The differential approximation probability’s maximum value for proposed affine 

S-box is 0.0234.Table 2.14 and Table 2.15 shows the comparison of differential 

approximation probability of proposed S-boxes with AES, APA, Gray, 𝑆8 AES, Skipjack, 

residue of prime and Xyi S-box.  

The differential approximation probability is shown below in the table 14 
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Table 14. Performance Indexes for affine AES S-box 

Analysis Max. Min. Average Square 

Deviation 

The 

differential 

approximation 

probability  

The linear 

approximation 

probability 

Nonlinearity 113 109 110.875    

SAC 0.5625 0.429688 0.505859 0.0160466   

BIC  108 110.607 1.01204   

BIC- SAC  0.486328 0.505162 0.011663   

DP     0.0234375  

LP 149     0.0820313 

 

3.4.8 Strict avalanche criterion analytically  

The SAC depends on the changing of input bit results and output bits. When a 

single bit varies on input, it levels half of output bits and an S-box is satisfied SAC. The 

avalanche of changes causes by a single variation in the input of network while 

Substitution Permutation (S-P) network is used in S-box. The comparison of affine S-box 

is shown in the table 15 below  

Table 15. Comparison of Performance indexes of proposed Affine AES S-box   and 

other S-boxes 

S-boxes Nonlinearity SAC BIC–

SAC 

BIC DP LP 

AES S-box 112 0.5058 0.504 112.0 0.0156 0.062 

APA S-box 112 0.4987 0.499 112.0 0.0156 0.062 

Gray S-box 112 0.5058 0.502 112.0 0.0156 0.062 

Skipjack S-box 105.7 0.4980 0.499 104.1 0.0468 0.109 

Xyi S-box 105 0.5048 0.503 103.7 0.0468 0.156 

Residue Prime 99.5 0.5012 0.502 101.7 0.2810 0.132 

Affine AES S-box  110.875 0.505859 0.505162 110.607 0.023437

5 

0.082031

3 

 

3.5 Image encryption applications 

It turn to a major issue that how can we make secure and reliable confidentiality, 

authenticity and probity of image. The encryption of the image is to mediate the image 

reliably over the channel or network so that any unofficial user can free to decrypt the 

image. The encryption of the image and video encryption have vast applications and 

usage in the area including the communication through internet, mediation, armed 

communications etc. The progression of encryption is moving toward a future of endless 

possibilities. Here we encrypt the Lena’s image through affine AES and residue prime 𝑆8  

S-box. We do some statistical analysis and compare them with other S-boxes. 
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3.6 Statistical Analysis 

Here, we evaluate the plain and encrypted image by some statistical analyses 

namely; energy, homogeneity, contrast, correlation and entropy. Instead of algebraic 

analysis we implement this newly proposed balanced 8 × 8 S-box in image encryption 

through these statistical analyses. 

 

3.6.1 Energy 

The energy of encrypted image is assessed by energy analysis. The Gray-Level 

Co-occurrence Matrix (GLCM) is used for this resolve. Energy is defined as the sum of 

squared components in GLCM. That is 

 ,,2 vupE
vu

  whereu  and v  show the pixels in the image and  vup ,  provides the 

number of GLCM. For constant image the value of energy is .1  

 

3.6.2 Homogeneity 

The substances of an image are surely distributed. In homogeneity analysis, the 

nearness of distributed elements of GLCM to GLCM diagonal is calculated. It is also 

famous as gray tone spatial dependency matrix. The GLCM exemplifies the statistics of 

arrangement of pixel gray levels in tabular form. The analysis can be lengthy further by 

treating entries from GLCM table. The precise form of Homogeneity is  

 
.

1

,

vu

vup
H

vu 
  

 

3.6.3 Contrast 

The value of contrast supports the observer to detect the objects of an image. A 

balanced contrast value in the image soaks the objects which permits the more accurate 

image ID. By way of the value of randomness upsurges in encrypted image, it also 

increases the contrast to very high level. Due to nonlinearity of mapping, the objects of 

the image are slanted entirely. That is the high value of contrast in the encrypted image 

displays the strong encryption since it is reliably related to the confusion produced by the 

S-box. That is 

   .,
2

vupvuC
vu

  In the case of constant image, the value of contrast is zero. 

 

3.6.4 Correlation 

Correlation analysis is done in three diverse ways. The vertical, horizontal and 

diagonal formats are designated for this purpose. By allowing for the texture of entire 

image, the correlation of pixel to its neighbors is examined. For the resolution, the 
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complete image is also analyzed together with partial regions. The correlation is 

considered as 

    
.

,

,
vu

vu

vupvvuu
K



 
  

For a faultlessly positive or perfectly negative images, the value of correlation is 

1 or 1   respectively. And for constant image, the correlation is zero, which means that 

it is not a number, it is just a data type for demonstrating the redefined value. 

 

3.6.5 Entropy 

The quantity of randomness is measured by entropy. The degree of entropy is 

related with the organization of the objects in an image. The randomness of an image is 

enlarged by substituting nonlinear components in the system. The top level of randomness 

styles the image hard to detect. Nevertheless, due to lacking in randomness, the encrypted 

image is just recognized. Hereafter, the encryption strength of an encrypted image is 

straight measured with entropy and its mathematical form is 

   ,log
0

kbk

n

k

xpxpH


  

where kx represents the histogram calculations. The results of newly proposed 8 ×

8  S-box for this analysis are shown in Table 17 and Table 18 which are closed to the 

standard values. 

Table 16. Contrast, Correlation, Energy, Homogeneity and entropy of plain image and 

cipher image of Lena (512x512, png) by affine AES S-box and residue prime 𝑆8 S-box. 

Images Entropy Contrast Correlation Energy Homogeneity 

Plain image 7.4451 0.2100 0.9444 0.1455 0.9084 

Affine AES S-box    7.5710 

 

9.6320 

 

0.1341 0.0182 0.4669 

Residue prime 𝑆8 

S-box 

7.5647 9.5568 0.1363 0.0184 0.4625 

Table 17. Comparison of P Contrast, Correlation, Energy, Homogeneity and entropy of 

plain image and cipher image of Lena (512x512, png) of affine AES S-box and residue 

prime 𝑆8S-box with different S-boxes 

Images Entropy Contrast Correlation Energy Homogeneity 

Plain image 7.4451 0.2100 0.9444 0.1455 0.9084 

Affine AES S-box 7.5710 

 

9.6320 

 

0.1341 0.0182 0.4669 

residue prime 𝑆8 S-

box 

7.5647 9.5568 0.1363 0.0184 0.4625 

AES S-box 7.2531 7.5509 0.0554 0.0202 0.4662 

APA S-box 7.2531 8.1195 0.1473 0.0183 0.4676 
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Residue prime S-

box 

7.2531 7.6236 0.0855 0.0202 0.4640 

𝑆8AES S-box 7.2357 7.4852 0.1235 0.0208 0.4707 

Gray S-box 7.2531 7.5283 0.0586 0.0203 0.4623 

Xyi S-box 7.2531 8.3108 0.0417 0.0196 0.4533 

Skipjack S-box 7.2531 7.7058 0.1025 0.0193 0.4689 

Figure 6. Lena image 

Figure 7. Lena encrypted image by affine AES S-box 

Figure 8. Lena encrypted image by residue prime 𝑆8S-box 
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CONCLUSION 

In this proposed work we have developed two different techniques to generate the 

new S-boxes and then discussed their different properties like nonlinearity, BIC, DAP, 

and LAP etc. We compare the strength and properties with other well known S-boxes and 

the comparison is given in tables. The nonlinearity of the 𝑆8 residue prime S-box do not 

change whereas in the case of affine AES S-boxes are decreased. In the second technique 

we can generate finite many S-boxes with different nonlinearity. In this technique, we 

can get different 256 S-boxes by changing the fixed byte with different nonlinearity 

whereas by the action of symmetric group 𝑆8 we get 40320 S-boxes with same 

nonlinearity. Although for the nonlinearity point of view it has deficiency but an 

improvement in the strength for image encryption as shown in statistical analysis. There 

are still lot of works for analysis point of view of these newly constructed S-boxes and 

further we can apply this newly develop technique on different S-boxes to construct new 

S-boxes. 
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