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INTRODUCTION

1.1 Fundamental Algebraic concepts

This section is further divided into many subsections which explain the fundamental
algebraic concepts, including group, ring, field, vector space, affine space, symmetric
group, etc. Further, the Galois field, substitution boxes, and group action are also
explained in detail, which is most important for our dissertation.

Binary operation

Definition 1: Letaset M # ¢ and ‘g’ be a mapping such that g: M x M ——>» M
then ‘g’ is called a binary operation if M is closed under the operation ‘g.” In
mathematical notation,

9, q) =pgqvV.,p.qEM
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Example 1: “+” addition is a binary operation for the non-empty sets Z, R, Q, and
C. These sets are closed under addition.
Remark 1: If we divide one integer by another integer, then the result would not
necessarily be an integer, so the division is not a binary operation.
Algebraic Structure
Definition 2: A set B # ¢ is called an Algebraic structure if it has at least one binary
operation.
Groupoid
Definition 3: If closed under that binary operation, a set A # ¢ with a binary operation is
called groupoid.
Example 2: i. (R, +) under addition set of real numbers

ii. (Q, +) under addition set of rational numbers

iii. (C, +) under an addition set of complex numbers
Semigroup
Definition 4: A groupoid A # ¢ is called a semigroup if it satisfies the associative property
under the same binary operation. Mathematically,
a*(bxc)= (a*b)xc V a,b,ceA
Example 3:Z, R, Q, and C are semigroup under the binary operation multiplication and
addition.
Remark 2: Z The set of integers is not semigroup under the binary operation division.
Monoid
Definition 5: A semigroup(S,*) is called a monoid if it has the identity under the same
binary operation. Mathematically,
s*e =s =e*s V s€eSs
Example 4: The set of rational, real, and complex integers are monoid under the binary
operation “+” and “.”
Remark 3: The set of natural number is not monoid under “+”.

1.1.1 Group

Definition 6: If each element in the monoid (G,*) has the inverse, then the set is known
as a group. It means for

Mathematically,

se G a s’'e G such that

s*s' = s'*s=¢ V s € G where e is identity.

Example 5: R, Q and C are groups under multiplication and additionwith identity 1 and
0 respectively.

Remark 4: In the set of integerZ each element is not invertible under the binary operation
multiplication soZ is not a group.

Similarly under the binary operation “.” and “+” respectively {1} and {0} are trivial
group.

Remark 5: In a group, the identity and inverse of each element are always unique.
Subgroup
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Definition 7: A subsetS # ¢of group G with binary operation “*” is known as subgroup
if S 1s also subgroup under the binary operation “*” which has the set G.
Example 6: The set of integer Z is a subgroup under the binary operation “+” R, Q, and
C.
Remark 6: Every group G has two trivial subgroups {e} and {G} itself.
Abelian group
Definition 8: A group G is called an abelian group with binary operation “*” if “*” is
commutative. Mathematically, g:.9, = 9291,V 91,92 €G
Example 7: i. Q, the rational numbers

ii. R, the real numbers

iii. C, the complex numbers
are the abelian group under multiplication
Remark 22: M,,(R) Matrices having entries from the set of real numbers called the real
matrices. It forms the non abelian group under the binary operation multiplication.
Cyclic group
Definition 9: If a group G is generated by a single element of G, then G is known as
cyclic. If G is cyclic under addition, we represent it mathematically,
G=«gp={ng:nez}
And if G is a cyclic group under multiplication, then we write it as,
G=«p ={g": neZ}
Example 8: let G be the set of nth root of unity, then G is called a cyclic group and
denoted by
G=ww={l,w, w?,..,w" 1} where w"=1
Remark 7: The order of the cyclic group and its generator are equal, and the subgroup’s
order and the element’s order divide the order of the group.
Remark 8: The set of integerZ has two generators under addition 1 and -1.S0 Z is an
infinite cyclic group under addition and the group of prime order is always cyclic.

1.1.2 Ring
Definition 10: A set R # ¢ with two binary operations “+” and “.” is known as a ring if
it satisfies the following properties which are given below.

i- R is an abelian group under the operation “+”

(1344

ii- R is semigroup under the operation .

({34

ii- “+” 1s distributive over .

Example 9: The set of integer Z is a ring under the binary operation which is mentioned
above.

Example 10: The set of rational numbers Q is a ring under the binary operation which is
mentioned above.

Example 11: The set of real numbers R is a ring under the binary operation, which is
discussed above.
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Example 12: The set of complex numbers C is a ring under the above mentioned binary
operation.
Example 13: Similarly, M,,(R), M,,(Z), M,,(Q), and M,,(C) are the example of rings.
Example 14: Z,and nZare also the example of a ring.
Commutative Ring
Definition 11: A ring R is said to be a commutative ring if “.”” is commutative.
Example 15: The set of integers forms a commutative ring.
Example 16: R, Q, and C are examples of commutative rings.
Remark 9: M,(R), M,,(Z), M,,(Q), and M,,(C) are the examples of non—commutative
ring.
Ring having identity
Definition 12: A ring R is known as a ring with identity if R contains the multiplicative
identity.
Mathematically, a.1 =l.a=a, Va€e R
Example 17: (Z, +, .)is a ring with identity.
Example 18: (Q, +, .) is a ring with identity.
Example 19: (R, +, .) is a ring with identity.
Example 20: (C, +, .) is a ring with identity.
Remarks 10: nZ where n>1 is a ring without identity.
Subring
Definition 13: A subset S # ¢ of a commutative ring Ris called a subring of Rif it fulfills
the following conditions.
i- If r,teSthenr—te€S
ii- If r,teSthenrte$S
iii-  1€S
Example 21: Zis a subring of Q .
Example 22: Qis a subring of R.
Example 23: R is a subring of C.
Example 24: nZis a subring of Z.

1.1.3 Field
Definition 14: A set F which is non emptyis known as a field if it satisfies the properties
which are given below.
I- (F,+) is abelian group .
ii- F - {0} form a multiplicative group.
ii- Distributive law holds multiplication over addition, i.e
p(q+71)=pq+pr vV p,q,r€F
Example 25: R is a field.
Example 26: Q is a field.
Example 27: C is a field.
Remark 11: The set Z,, ={0, 1, 2, ..., p —1} is a field where p is any prime number.
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In cryptography, we always prefer to choose field having finite elements called finite field
or Galois field. The total number of elements in the field is known as order of the field.
Finite field or Galois Field

Definition 15: A field in which the number of elements is finite, is called finite field or
sometimes called Galois field in which we can subtract, add, multiply and invest. If this
finite field has p elements then we write it as GF (p).

Example 28:Z: = {0, 1, 2, 3, 4} is a finite field having five elements.

Remark 12: A real field is an infinite field.

Theorem 1: A finite field having order m occurs if m is a power of a prime. i.e m =p"
for some positive integers n and prime number p and p is known as characteristic of the
finite field. There does not exist finite field of order 24 since 24 = 23.3 so 24 is not the
power of a prime.

Prime field

Definition 16: The prime order’s fields are the most important and vital in the algebraic
system. The field’s elements GF (p) can be shown by integers 0, 1, 2, 3, ...p — 1.
Theorem 2: Let p be a prime number and the integers ring Z,is represented by GF (p).
This is said to be a prime field or Galois field having a prime number of elements. Also
the elements other than zero of the field have their inverses.

1.1.4 Vector Space
Definition 17: Let VV be set which is non empty and Fis a field then Vis known as Vector
Space if the below mentioned conditions are satisfied.

i- Vis abelian group under addition.

ii- Im+n)=1m+1n V 1€F and m,ne

iii- (s+tm=sm+tm Vs, teF ,mevV

iv- s(tm) = (stym Vs, teF,meV

V- Ilm=m.l=m V1eF meV,1lisidentity under multiplication.

Example 29: The set M,, of all matrices of ordern is known as vector space over F.
Example 30: For a field the set F™ = {(x1,x5, X3, ....xp)}x;€ F, 1 <1<n} is a vector
space.
Subspace
Definition 18: The non empty subset Wis called subspace of a vector space V if Wis also
a vector space under the same operation defined in V.
Theorem 3: A non empty subset W # ¢ of a vector space Vis called subspace if and only
if

i- wy; WL,€EW then wy; + weW

ii- If peFandw € W thenpw € W

Remark 13: Vitself and {0} are subspaces of V, called the trivial or improper subspaces
of V.
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0
x}Wherex, y €R, is a subspace of RS3.

Y.
Linear Transformation

Definition 19: Let W and VV over the same field Fare two vector spaces then sfrom Wto
Vis called linear transformation if it satisfies the properties which are mentioned below.
i- s(u+v)=s(u)+s)
ii- s(pu) = ps(u)wherep is a scalar.

Example 31: N =

Example 32: The transformation s(x, y) = (2x,y — x) is linear transformation.
Affine Transformation
Definition 20: A set Ehaving vector space properties and mapping f such that

f: EXE —E
f(4,B) = AR
Remark 14: Chasless relation explain direction
—> —> —>
AA=0 and AB = —BA

Remark 15: Every vector space is affine space.
Permutation
Definition 21: Let Y = {1, 2, 3,...,n} and then f:Y—Y Dbe the collections of all bijective
mappings are called permutation.
Symmetry
Definition 22: It is a transformation which acts upon the objects and leaves it apparently
unchanged.
Symmetric Group
Definition 23: If X= {1, 2, 3, ... n} then the collection of all permutation of this set X
is known as the symmetric group and denoted by S,
Remark 16: S,,contains the n!
Remark 17: Ssis the symmetry of equilateral triangle.
Group Action
Definition 24: Let G be a group and Y be a set along with rule which associates every
element peG and yeYto an elementpyeY such that the following conditions are
satisfied.

I- ly=y V yeY

ii- s,teG and y €Y such that

(st).y =s.(t.y)

If such an association exists we say that G is acting on Y and this association is called
group action.

Example 33: The group of permutation of n objects if peGand y€ Y such that

p.y =p(y)

Example 34: Gis any group Y = G, define action such that g.y = gyg~? then G is acting
by conjugation onto itself.

Stabilizer
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Definition 25: Let G be a group which is acting on the Ythen stabilizer of y € Y is defined
as

Gy={ geG: g.y=y}

1.2 Fundamental cryptographic concepts

Now we shall discuss basic terms related to cryptography which are useful and important
for understanding the main idea of cryptography and also very important for the proposed
work in the coming chapter. Now we shall explain some basic definitions related to
cryptography.

Plaintext

Definition 26: The original text or message through which one person wants to
communicate with the other person is termed as plaintext. It may be a word file, numerical
data, audio file or video file and denoted by M.

Example 35: “please give me a glass of water” is a word file which is a plaintext.
Ciphertext

Definition 27: The text or message which cannot understand by any one or meaningless
is known as ciphertext. The original message is transformed into a message which cannot
be readable in cryptography. It is denoted by C.

Plaintext Alphabets

Definition 28: The alphabets or characters are used in plaintext is known as plaintext
alphabets. These may be numerical data, English alphabets or symbols etc.

Ciphertext Alphabets

Definition 29: The alphabets or characters which are used to convert the message from
plaintext to ciphertext are known as ciphertext alphabets. These may be different from
original alphabets.

Cipher

Definition 30: The process through which a readable message can be converted into
unreadable text or meaningless form is known as cipher. It may be substitution or
transformation and known as cipher substitution or cipher transformation.

Key

Definition 31: When the sender sends a text, he also sends some extra information so that
receiver used this information or code to read the ciphertext which is known as the key.
In other words, the key is some rules which are used during the encryption and decryption
by sender and receiver. It is denoted by K.

Encryption

Definition 32: The process through which the plaintext is converted into ciphertext is
known as encryption. In cryptography, there are used some encryption techniques to send
the confidential message from an insecure system. For encryption there are two main
requirements;

» An algorithm

» Key
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A sender uses it to encrypt the plaintext.

Encryption Algorithm

Definition 33: The process or mathematical process through which we convert the
plaintext into unreadable and meaningless form is called encryption algorithm. It is used
by a sender to encrypt the plaintext into ciphertext.

Decryption

Definition 34: The process through which the unreadable and meaningless ciphertext
convert into plaintext is said to be decryption. Decryption is the alter process of
encryption. This process is used on the receiver side to decrypt the meaningless message
to plaintext. The process of decryption has two requirements;

» Secure algorithm

> Key

Decryption Algorithm

Definition 35: The process or mathematical process that converts the unreadable or
meaningless message into readable text (plaintext) is known as decryption algorithm. In
other words, these are techniques which are used in decryption.

It will be cleared from the below image:

Encryplion Decryption
Plaintext [—— Ciphertext Plaintext
Key Key

Figure 1. A complete cipher

1.2.1 Cryptology and its classification

Cryptology

Definition 36: Cryptology is the branch of science related to information security. This
word is derived from the Greek word kryptos, means hidden so Cryptology is the study
of secret message.

Classification of Cryptology

Cryptology is further divided into two main branches;

» Cryptography

» Cryptanalysis
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Cryptography

Definition 37: It is the study of the method of transforming a secret message such a way
that only the authorized person can understand it.

Cryptanalysis

Definition 38: It is the branch which deals to break the cryptosystem. It is referred to as
“breaking the code”.

1.2.2 Purpose of Cryptography

Cryptography plays a vital role to achieve the security goals to make sure the privacy of
the secret data from the unauthorized channel. It has wide use in daily life now a day due
to high security advantages.

The various goals of cryptography are given below.

Confidentiality

To make sure that the secret data in the computer is disseminated and can be accessed
only the unapproved party or channel and not by the unauthorized party.
Authentication

The information or data which is accepted by any system or party to be checked whether
the data received from an authorized party or a wrong party.

Integrity

Only the certified person or channel is allowed to change the given text or message, no
one can alter the message between the sender and receiver.

Non Repudiation

It will ensure that neither the receiver nor the consigner (sender) of a message can deny
the transmission.

Access Control

Only the authorized party can access the confidential data or secret information.

1.2.3 Classification of Cryptography

Cryptography is further divided into two main categories;

» Symmetric key cryptography

» Asymmetric key cryptography

Symmetric Key Cryptography

In such type of cryptography, encryption and decryption both have the same key, as
shown in the following Fig.
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Plain-text input Cipher-text Plain-text output

“The quick “The quick
brown fox “AxCv;5bmEseTfid3) brown fox
jumps over fGsmWe#4~ sdgfMwi jumps over
the lazy r3:dkJeTsY8R\s@!q3 the lazy
dog” %” dog”

Encryption Decryption

.

Same key
‘/(shared secret)\‘

Figure 2. Symmetric Key Cryptography
In such a type of cryptography, the key plays a vital role in the data's security depending
on the key's nature and length. There are various symmetric algorithms: DES, TRIPLE
DES, and AES. It is further divided into two subclasses;
» Block Cipher
» Stream Cipher
Block Cipher
It is a symmetric key algorithm which is used for encryption. It is mapping which maps
n bits of plaintext to n bits of cipher text where n is known as block length or key length.
It is usually known as a simple substitution cipher with a large block size.
Stream Cipher
This cipher is also a symmetric key encryption system. It is an essential kind of encryption
algorithm. It usually works on a smaller part of the information as compared to the block
cipher, which works on a large block of information. It is normally faster than the block
cipher in hardware and has less complex hardware circuitry. It may also be advantageous
in such situations where transmission errors are primarily probable.

1.2.4 Asymmetric key cryptography

Asymmetric key cryptography or public key cryptography is cryptography which has a
pair of keys which are used to decrypt and encrypt the data to make the algorithm more
secure. In this type of cryptography, there are two disparate keys that are used to encrypt
and decrypt the given data, as shown in Fig. 3
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Asymmetric Encryption

LA

Public Different Keys Secret
Key Key
A4Sh*L@9.
T6=#/>B#1 " PR
ecryption
R06/J2.>1L e
1PRL39P20 ——
—r
Plain Text Cipher Text Plain Text

Figure 3. Asymmetric key cryptography
The symmetric key does not replace it. An example of such type cryptography is elliptic
curve cryptography.

1.2.5 Theory of S-Box

In the following section, we will discuss the substitution boxes(s-boxes). The main task
of S-box theory is to help in the research work to achieve the goals and dissertations.
Substitution Box (S-box)

In cryptography, an S-box is the important and basic component of the symmetric key
process through which substitutions are made. Such block ciphers are used to develop the
correspondence between the cipher text and key.

What is an S-box?

The S-Boxes are basically Boolean functions from {0,1}2__£0,1}"* mxn mappings.
Thus, this can be explained as there are n components mapping, each being connected
from m bits to 1 bit; in another sense, each component mapping is a Boolean mapping in
m Boolean variable.

1.2.6 Balanced Function

A Boolean mapping is considered balanced if the number of zeros and ones are the same

in the truth table in counting. The Hamming weight of this binary sequence is how many

ones in number.

Properties of good S-box:

» Balanced Component mapping

» The non-linearity of the Component should be very high.

» The Non-zero linear combinations of Component mapping should be highly non-
linear and balanced.

» The s-boxes should be highly algebraic degree.
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1.2.7 Substitution —Permutation Network (SPN)

Product Cipher

Definition 94: Two or more transformation get together in a cipher to make new cipher
which is analogously (comparatively) more secure than the separate ciphers is known as
product cipher.

Definition 95: Permutation is the substitution of the sequence of the element of the text
by the sequence of these elements which are permuted. There are no addition and
subtraction of the elements. We just reshuffle the elements.

Substitution Network

Definition 96: The substitution network or SP network is the product of two or more
ciphers. There are used a chain of functions related to mathematics are used in this
algorithm. In these algorithms, there are used S-boxes and P boxes for substitution and
permutation.

1.2.8 Block cipher and advanced encryption standard

Many cryptographic algorithms have been proposed, but AES is the latest and
most secure crypto algorithm. This cryptographic algorithm used permutation operations
to make information more secure. We now briefly describe the cryptosystem approved
for general standards and technology (NIST). The Advance Encryption Standard (AES)
was adopted and effective on May 26, 2002. The Advance Encryption Standard (AES) is
also known as the Rijndael Algorithm. It was offered by two cryptographers from
Belgium, Joan Daemen and Vincent Rijmen, who submitted this proposal to NIST while
selecting AES. The AES was developed to replace two currently existing standards, DES
(Data Encryption Standard) and Triple DES because these two standards were no longer
secure cryptosystems. Therefore, it was necessary to phase out the DES and adopt a more
secure encryption standard. For this algorithm, NIST selected three members of the
Rijndael family, each with a block size of 128 bits but with different key lengths of 128,
192, and 256 bits. The key space size in AES is 2128, or approximately 3.4x1038. This
number is so large that the fastest “Cracker Machine” available would take trillions of
years to crack the AES code by doing an exhaustive key search.

Therefore, AES is expected to remain a secure cryptosystem for many years to
come. The enciphering algorithm in AES was developed by two cryptographers, Dr. Joan
Daeman and Dr. Vincent Rijmen from Belgium, and was given the name Rijndael. The
basic structure of this algorithm is that of an iterated block cipher but with some additional
steps. We now discuss briefly the Rijndael algorithm in AES. There are several versions
of the Rijndael algorithm in AES; there is a difference in the block/key length and the
rounds in numbers. The possible values for the key length are 256, 192, and 128 bits.
Similarly, the number of rounds can be 8, 10 or 12. There are a few steps:

» Round key addition
» S-bit substitution
» Permutations

» Row shift operation
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» Column mix
AES algorithm can be understood by the following diagram:

START

Nr=9,110r13
Key Expansion
SubBytes
AddRoundKey ShiftRows SubBytes
; —
MixColumns ShiftRows
; e
AddRoundKey AddRoundKey

END

Figure 4. AES Algorithm

1.3 Some Historical Ciphers

Ciphers play a vital role in the field of cryptography. There are different ciphers which
are used in cryptography depend on different algebraic structures like groups, rings and
fields. Here we discuss some historical ciphers in detail with examples.

1.3.1 Process of Transforming a Message

Basically, there are two ways to transform the message in cryptography. One is called
transposition and other is called substitution. Here we shall discuss those substitution
methods especially those that employ algebraic techniques and make use of the algebraic
system like fields and rings. The general principle involved in the substitution method is
to select a permutation f of the set of letters in the alphabets and replace each letter x in
the message by f(x).

Suppose we want to send a message to a friend that

ALGEBRA IS GREAT FUN; Plaintext

Since we don’t want that an unauthorized recipient can know this message, we decide to
send the message in secret form. Let us take f to be the permutation given by table 2.1;
for each letter x in the top of the row, f(x) is the letter directly below x.
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Table 1. Fixed Table for Cipher

A/B|C|D|E |F|G|H]|I
N|F RIK|S|C|E |L
JIKILIMIN|O|P|Q |R
AlJ|IQIG|T |B|I IM|D
S|IT|IUIV|W|X|Y|Z
HIOX|Z |V |Y UW

Replacing each letter in the message by f(x) without blank spaces we transform the
original message to
NQCKFDNLHCDKNOSXT ; Cipher-text
We send this message to our friend who has been already provided the secret key in
advance. Our friend can recover the message by replacing the letter y in the received
message by f~1(y). But the unauthorized person who does not aware the secret key, he
can’t find out the original message. It looks that one can try all the possible permutations
to find out the meaning full message and such a process to breaking the code is known as
exhaustive key search. But the number of permutation in the set of 26 English alphabets
is equal to

26! = 403291461126605635584000000 =~ 4x102°
This number is so large that it is very hard to find out all possible permutations. If our
enemy can take one second for one permutation it will take 10° years to go through all
the permutations. So it is not an easy task to find the exhaustive key. It is clear from the
above discussion that it is computationally infeasible to break the code by selecting all
the permutation but still there are available such type of computers which find out the
original message in the short interval of time from the ciphertext. It is required that build
up such algebraic system like rings and fields to make the system more secure. Before
discussing the algebraic methods in which simple algorithm is used which needs no
abstract.

1.3.2 Caesar Cipher

This is a mono alphabetic cipher. It works by arranging the alphabet around a circle as
shown in figure 2.2. If we shift each letter forward by k places in the circle we get the
resulting permutations called the k length cycle shift and such type of enciphering in
which cycle shifting is used called the Caesar cipher. The actual cipher which was used
by Caesar with cyclic shift k = 3. In such type of cyclic shifting letter, we shift Ato D, B
to E and so on. It is shown in the figure below completely,
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Figure 5. Caesar cipher with k =3

In the form of table, we can make the arrangement of alphabets as
Table 2. Caesar cipher with k=3

A|B|C|D|E|F|G|H]|I
D|IE|F|G|H|I |J |K|L
J I K|{LIM|N|O|P |Q|R
MIN|OP|Q|R|S|T]|U
S|T|UIV|W|X|Y|Z
V W X|Y|Z | A|B|C

Example 36: Encipher the plaintext “HARD WORK IS KEY TO SUCCESS”
Using Caesar cipher with k = 3
Solution: We use the key k = 3 for enciphering as shown in above table 2.3, by
substituting each alphabet in the plaintext by the alphabet below it. By converting all the
alphabets of the plaintext we obtain the ciphertext

KDUG ZRUN LV NHB WR VXFFHVV
As a result, we obtain the text which is meaningless. We can decipher this meaningless
text by replacing each letter in the text by the letter above each one. As a result, we obtain
the original plaintext

HARD WORK IS KEY TO SUCCESS.

1.3.3 Vigenere Cipher

We now explain a periodic substitution cipher composed of shifts ciphers. This cipher is
called Vigenere cipher named after Claise de Vigenere, a cryptologist of the 16" century.
This cipher with period p and key sequence (ky, ky, k3 ..., k;) . It is simple to identify
the shift cipher by the letter which moves to A. For example, the letter A for key cipher
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with k = 3 is D. The word formed by this cipher is called Vigenere cipher. Each letter in
the key word, the table contains the each row with one alphabet. The letter below the A
forms the cipher. It is given below the table 2.4 with key word TASK.

Table 3. Vigenere cipher with key word Task

ABCDEFGHIJKLMNOPQRSTUVWXY/Z
UVWXYZABCDEFGHIJKLMNOPQRST
BCDEFGHIJKLMNOPQRSTUVWXY ZA
TUVWXYZABCDEFGHIJKLMNOPQRS
LMNOPQRSTUVWXYZABCDEFGHIIJK

Example 37: Encipher the given plaintext using the Vigenere cipher with key word
TASK.

| MISS YOU

Solution: To encrypt the plaintext we follow the following procedure, we see the each
word in the sentence, and for example the first word | in the message is replaced with the
letter ¢ and similarly M the second letter in the second word is replaced by G and I is
replaced by J, and continuing this procedure we get the cipher text

C GJLD SPN

We obtain a text which is meaningless. Similarly, we can decipher the message by taking
key word in reverse direction and in this way obtain the original message which is

| MISS YOU

1.3.4 Modular Enciphering and Affine Cipher
Let n be the number of characters in the message alphabet A. Let S = Z,, be the ring of
integers modulo n. The enciphering in which algebraic operations of Z,, are used is called
modular enciphering. An affine cipher is the simplest example of modular ciphering.

Let a, b €Z,, and suppose a is co prime ton. Then a has inverse in Z,. Hence the
mapping ¢:Z, —> Z,

d(x)=ax+b (2.2)
It is a bijective mapping. The mapping in the can be express as the operations of
multiplication and addition in Z,, is given by
d(x)=ax+>b mod n (2.3)
Where x mod n represent the remainder left by dividing by n. For deciphering, we use the
inverse mapping which is given by
') =a'ly-b)=a'y—a'b (2.4)

For every y € Z,, If the plaintext alphabets A is the set of alphabets A, B, C, ..., Z thenn
= 26. We take the mapping ¢: A — B as shown in table 4
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Table 4. Affine cipher

A |B |C |D |E F G |H |I

1 2 3 4 5 6 7 8 9

J K |L |[M N |O |P Q |R

10 |11 |12 |13 |14 |15 |16 |17 |18

S T |U |V (W [ X |Y |Z

19 |20 |21 |22 |23 (24 |25 |0

Example 38: Use the mapping ¢ given above and the affine cipher

d(x) = (5x+5) mod 26 (2.5)
and for deciphering the mapping
d(x) = (7x+4) mod 26 (2.6)

1. Toencipher ALGEBRA.
2. To decipher AMEQMNZW.

Solution: As 5 is co-prime to 26 therefore, ¢ is bijective.
1. Replace each letter in the plaintext by a number which is shown above in the
table and then applying the mapping ¢. We write the alphabet relate to ¢(x). It is
completely described in table 5.

Table 5. Enciphering process

Plaintext A L G E B R A
X 1 12 7 5 2 18 7
5x+5 10 65 40 30 15 95 40
5x+5mod26 | 10 13 14 4 15 17 14

Cpherexd——JF———WVM——N—D O QO N

2. To decipher the text we use the inverse mapping ¢~1.1f 7x + 4 = y then x
=7 1(y—4).In Z,g ,=7"1 =15as15x 7 =105 =1 (mod 26) so for
deciphering the mapping is d(y) = 15y — 60 = 15y + 18. The deciphering
process is given below in table 2.6
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Table 6. Deciphering procedure

D

y 1 13 5 17 13 14 0 23

15y + 18 33 213 93 273 213 228 18 25
45y+i8med26——F—5—15—31 33— 5—26—318—25——
Plaintext G E al M E T R Y
1.3.5 Hill Cipher

We now discuss the importance of the affine cipher which is called as Hill Cipher. Let n
be the number of alphabetic letters and r be any positive integer such that » > 1. Then the
mapping f: A —»Z, which can be extended to f:A=—( Z,)" by defining the mapping
¢ (b1, by, b3, ... by) = (9(b1), b((b2), §((b3), ..., d((b+)) 2.7)
Let us denote the elements of ( Z,,)"as columns and let ( Z,)™" denote the set of r x r
matrices having entries from Z,. If M is invertible then
(det M) (detM™Y) =det(M M) =detl =1 (2.8)
Therefore det M is an invertible element inZ,. In the other direction ifdet M is
invertible in Z, then M1 is given by M~1 = (det M) tadjM
Therefore we can say that a square matrix M over Z,, is an invertible if det M is co-

prime to n.
If M be a matrix whose inverse exist in Z, and D €( Z,,)". Then the mapping
dX)=KX+D ; V €(Z,)" (2.9)
This is called Hill Cipher. To decipher we use the inverse direction
¢ (V)= MY - D) (2.10)
Example 39: Use the Hill cipher withn=26and r =2
= SR+ oo 211

1. Encipher the word MOUNTAIN
2. Decipher the word AJGLLRKE

Solution: We firstly verify that det[g 2] = 23 is co-prime to 26. We divide the word

into blocks of two letters. We represent each block by the number of columns given by
the mapping f and then apply the mapping ¢. This enciphering process is given by.

Table 7. Deciphering Algorithm
Plaintext MO UN TA

o] a1l 516

(:iphefte::t |3| I Ién DI (ad
i~ 54
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In Z,s (detM)~* = 23~ = 17. Therefore M~! = 17 [_65 =]

. 24 19]

19 61
To decipher the message the following mapping is used.

S o o P (G R ) @12

METHOD

The literature review is very important and vital not only to connect the conceptual ideas
with handy examples and applications. It provides the light for the role of a research study
and this study is linked to secure communication. So in this chapter fundamental
background is lighted by stating important results in numbers. Therefore literature review
plays a vital role in the field of a research study.

RESULT AND DISCUSSION
A. REVIEW OF S-BOX THEORY

2.1 Rijndael Algorithm

Belgian cryptographers Daemen & Rijmen, (1999) designed a new algorithm for
enciphering. It is known as Rijndael algorithm. There are several versions of Rijndael in
AES; they differ in key length, block, and number of rounds. The possible values for this
block length and the key length are 256, 192, and 128 bits. It is a substitution-permutation
network (SPN) with 14, 12, and 10 rounds, depending on the size of the key. As
mentioned earlier, the general scheme of Rijndael is like an iterated block cipher.
There are several operations that are used in Rijndael;
» Round key addition
» Byte substitution
» Row shift
» Column mix
The detailed discussion is presented in Daemen & Rijmen, (1999).

2.2 Polynomial Description of AES

Rosenthal (2003) explained the complete Rijndael Advance Encryption Standard
in the sense of a complete polynomial description, which was taken for selection by the
National Institute of Standard and Technology (NIST), and it described the structure of
S-boxes. It also shows how the whole algorithm can be described in a finite ring through
a sequence of algebraic manipulation. In Rosenthal (2003), it was explored that
description relates to the Algebra of substitution box, so-called ‘S-Box’ and the most
important non-linear part of the AES system. The sparse polynomial explained the S-box.

2.3 Action of Symmetric Group Sg on AES S-box

Hussain et al., (2010) described a new Sg S-box which is made by acting
symmetric group Sg on AES S-box and these obtained S-boxes are used to
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construct40320%9320 secret key. Thus in this way, we obtain the encryption keys with the

permutations of these existing S-boxes which give 40320 new S-boxes which improve

the security and system become more reliable and safe. In Hussain et al., (2010) it is

explained that how we construct the new S-boxes, there are several steps which are used

to construct the Sg S-box;

» Conversion hexadecimal to decimal

» Conversion decimal to binary

» Acting Sgon the elements of AES S-box

» Conversion to decimal

There are 40320 elements in symmetric group Sg, acting all the elements on AES S-box

we get newly Sg AES S-boxes whose nonlinearity is same as the original one.

Actually, on the elements of the AES S-box we act the symmetric group Sg and we

reshuffle the elements of the S-box. Here the elements of Sg are permutations which are

acting on the binary digits and permute the original elements.

Here is the example of Sg AES S-box whose nonlinearity is same as the original one.
Table 8. Sg AES S-box

209]118]215]243|91 |241]243]204|18 |128]213]17/7|127]207]185|87
105|9 |232]246]123]226]197]90 |188|78 [25 ]|189]46 |28 |83 |72
159]2541139(21 |23 ]183]223]108|22 |156{220]218]210]106]146|134
4 1205]145]201]34 |15 |132]43 [133|3 |8 |89 |249]|149]|27 |214
160)137]52 |35 |163]|117]99 |24 |67 |179]79 [155]|176]217]181]|12
1951202|0 [252]16 ]126]154]227]113|233|63 [178]97 |100]98 |237
74 |253|57 |251]193]228]147]140]196|250|1 |247]66 |54 |175]|56
1941153]64 |[173]|11 |174]50 |222]|62 |31 |107|144|2 ]255]219]75
23636 |131]124|231]143]68 [135|76 |157]119]182|84 |230]162]211
80 |136]229]110]17 [49 |10 |40 |69 [125]58 |6 |111]103|161}235
88 |19 |51 |33 |224]5 |20 |102|73 [203]60 |81 |138]142]|92 |242
22111041151]244(172]206]101]184|116|71 |94 |121|212]|115]61 |32
59 |114]148]53 [38 |29 |30 |77 |120]238]86 |167]225]190]169]41
82 |55 [158]85 |96 [129]95 |37 |208{150]199]186]13 |200]166|47
216|122142 1302401234145 |14 |1/1{39 |141]248]109]198]|48 |239
44 11521168]164]191|93 |65 |112{192]|170|180]165]26 |70 |187]7

2.4 Image Encryption

(Hussain et al., 2012) described with the help of two basic and key concepts image
encryption: one is the theory of replacement or substitution, permutation network and the
other is called Chaos theory. Furthermore, it is analyzed the proposed algorithm’s strength
by applying it on a color image and derive that the color image can be encrypted through
the algorithm successfully and it makes secure and safe against many classic attacks. In
Hussain et al., (2012) he demonstrates that chaotic
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encryption system is not secured and it can attack easily, So in order to improve the
security he offered to adopt the non-linear functions, limited in time and space to alter the
key continuously

2.5 Permutation properties

Beth & Ding, (1994) explained the vital permutation’s properties which one can
use in secure key block cipher as a round function to secure it from different attacks. Good
nonlinearity and high order of several classes of almost complete nonlinear permutations
and other permutations in GF(2)™ are presented. In Beth & Ding, (1994) key and basic
properties of APN permutation network are highlighted, in this way we obtained highly
nonlinear S-boxes.

2.6 Analysis of S-box

Hussain et al., (2011) divided the work into two sections, 1st section represents
the analysis of S-box and bit independent criterion, their nonlinearity etc. whereas 2nd
section represents conclusion. It is also analyzed against different criterions such as bit
independent criterions, differential approximation probability and linear approximation
probability; in the view of this work by linear fractional transformation we can construct
new s-boxes.

2.7 Analysis of residue prime S-box

Hussain et al., (2011) made some useful efforts to analyze the S-box which is
based on the residue of a prime number, which includes differential approximation
probability (DP), bit independent criterion (BIC), linear approximation probability (LP)
and non-linearity. With the help of these results, we derive the result which is linked with
the algebraic encryption strength and weakness of this S-box. In Hussain et al., (2011)
they analyzed S-box for different criteria and derived that the residue prime S-box is not
satisfied all criteria absolutely.

2.8 Construction of S-boxes using projective general linear group

Altaleb et al., (2017) have developed new techniques to construct highly non-
linear S-boxes. Firstly, they used the action of PGL(2, GF (28)) on the Galois field of 256
elements and then use permutations to construct new kind S-boxes. They computed the
strength of these S-boxes and made some useful analysis. They compared these S-boxes
with the well known existing S-boxes and show that the analysis of these S-boxes is
comparatively better. By the action of the projective general linear group, they
constructed 16776960 numbers of S-boxes.

2.9 Cryptographic criteria of Boolean functions

It was studied the mathematical and practical cryptographic criteria of Boolean
functions in Elhosary et al., (2013) introduced the algorithm that fulfills the criteria and
introduced the Boolean functions that satisfy the better cryptographic criteria. The
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Boolean function representation and cryptographic assessment were presented in
Elhosary et al., (2013). It was beginning of cryptographic algorithms and opened the new
door for the analysis and further, studied the Hash function.

2.10 Matrix manipulation of cryptographic functions

Some efforts were made to investigate the matrix manipulation of cryptographic
functions in Meletious et al., (2015). Firstly, considered the cryptographic repeated
applications of orbit and found difficult to derive the cryptographic functions which are
related to the orbit’s length. They investigated the behavior of matrix’s power which is
made from the generator of the multiplicative group of several primes pin Z,,. It was
studied matrix factorization approach at the end in (Meletious et al., 2015)

2.11 A method to construct S-boxes based on permutations

In a block cipher, S-boxes are very important nonlinear components. The
nonlinearity makes the system more safe against the differential and linear cryptanalysis.
These S-boxes are key dependent. In Kazlauskas et al., (2016) simple four algorithms are
presented to construct the S-boxes which are based on the key dependent. Kazlauskas et
al., (2016) presented eight distance metrics for the analysis of these key dependent S-
boxes. In the last section of K. (Kazlauskas et al., 2016), they experimentally investigated
the quality analysis of these key dependent S-boxes. These S-boxes can be used in block
cipher like AES cipher. It was studied that by changing the secret key, the order of the
elements of the S-boxes based on key dependent are also changed.

2.12 Construction of S;4 AES S-boxes

As earlier some efforts are made to construct the Sg S-boxes by the action of
symmetric group Sg and constructed 40320 newly Sg S-boxes as the order of the
symmetric group in Hussain et al. (2010). In Siddiqui et al., (2016) used the action of S,
instead of Sg to construct the new S;¢ S-boxes and generate new 16!(20922789888000)
S-boxes as the order of the symmetric group S;¢. At the end finally, they analyzed the
strength of the proposed S-boxes by different properties like balance properties,
nonlinearity, bijection, bit independent criterion and linear approximation probability etc.
These S-boxes are used to develop m*® secret keys which are used to make the system
more reliable and secure. One of the advantages of AES algorithm using S;¢ S-boxes
gives more reliable keys as compared to the algorithm using in SgS-boxes.

2.13 Construction of large cryptographic S-boxes

It is clear that large S-boxes have better cryptographic properties than the smaller
S-boxes. The main target is to achieve the large S-boxes with bent functions. In Detombe
& Tavares, (1992) constructed 5x5 S-boxes with the required bent function. Whenever,
these variables are odd in numbers then they have desired cryptographic properties and
can be constructed easily. These newly constructed S-boxes fulfill the criterion of good
S-boxes. Bent function plays key role to achieve the maximum nonlinearity.
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2.14 Improvement in cryptographic properties of AES S-box by multiplication

Many cryptographic algorithms have been proposed but AES is the latest and
secure crypto-algorithm. This cryptographic algorithm used permutations operations to
make information more secure. We now give a brief description of the cryptosystem
approved for general standards and technology (NIST). It is called the Advance
Encryption Standard (AES) and was adopted and effective on May 26, 2002. Florin
Medeleanu, CiprianRacuciu and Marius Rogobete studied the chances to improve the
cryptographic properties of AES algorithm in Medeleanu et al., (2015) and effect of these
improvements. It is also described that all the cryptographic properties could not improve
at the same time.

2.15 Construction of S-boxes for lightweight block cipher

During the study of different techniques for the construction of S-boxes, it is
derived that there is some space for the improvement in the cryptographic properties. H.
Mhajloska & Gligoroski (2011) made some useful efforts by using Quasigroup of order
4 to construct new cryptographic S-boxes in (Mhajloska & Gligoroski, 2011). Further, it
has opened new door to construct new S-boxes which are satisfied the criterion for the
good S-box. They also compare the properties of these constructed S-boxes with the well
known existing S-boxes.

2.16 Affine-power Affine S-box

Cui & Cao (2007) studied the algebraic and polynomial structure of the AES S-
box and derive that only 9 terms are involved for algebraic expression, while 255 terms
for the inverse S-box. They presented new affine-power-affine S-box to improve the
algebraic complexity. The algebraic complexity improves of AES S-box from 9 to 253
while for the inverse 255 remain same. They compare the properties of this affine-power-
affine S-box with the well known S-boxes and derived that this S-box fulfills the criterion
for the good S-box.

2.17 Linear cryptanalysis method for DES cipher

M. Matsui derived a new technique for cryptanalysis of DES cipher, which is a
well known plaintext attack. It is possible to break 8 rounds with 222 and 16 rounds with
247 plaintext. We can apply this method on any situation as described in Matsui (1994).
It was studied that these attacks for the ciphertext can deal with any non-random situation
at any stage
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The deciphering process is given below in the table completely
Table 9. Hill Deciphering procedure.
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B. CONSTRUCTION OF SgRESIDUE PRIME AND AFFINE AES S-BOXES

Rijndael Block Cipher is based on 128 bits and developed by two cryptographers,
Joan Daemen and Vincent Rijmen, was taken on Advanced Encryption Standard (AES)
by (NIST) on October 2, 2000. AES is one of the most reliable algorithms which are used
in cryptography of symmetric key. The S-box has a vital role in AES, therefore most of
the work is focused on the battlement of the S-boxes. In this section, we represent new Sg
S-boxes by using action of Sg on residue prime S-box as earlier some efforts were made
(Hussain et al., 2010). Furthermore, we utilize these S-boxes to construct 4032049320
secret keys from Sg S-boxes and then we utilize these keys and propose a new algorithm
which is more reliable when two channels or persons communicate each other. S-box is
the only non-linear component which provides confusion capability for AES.

3.1 Algebraic Expression of Residue Prime S-box
The expression for residue prime s-box is obtained from the function in GF(28) .
As GF(28) is a finite field, therefore inverse with respect to multiplication of every
element exists and 0 — 0. This inversion of multiplication for the function is as
follows
1 xx0

Fe={7%"
This affine transformation which can be decomposed into two steps: 1. The linear
transformation L(x)

y = L(x)

And the proposed implementation depends on the residue of a prime number and
the complete entries in S-box are 256. These entries are the residue of 257, there is logic
behind the choice of the number 257 because the residues from 1 to 255 have unique
inverses. Furthermore, these residues can be utilized in all block size of AES.
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3.2 Sg residue prime S-boxes

Firstly, we perform the action of Sg on the original residue prime S-box as the new
S-boxes was developed on similar action on AES S-box (Cui & Cao, 2007) and
sequentially construct 40320 new residues prime S-boxes. This process is preceded with
the conversion of the elements into bytes and the elements in bytes are permuted by the
action of the symmetric group Sg which gives 40320 new S-boxes. For the formation of
new S-boxes, the resulting algebraic expression is
f: Sgx residue prime S-box ——>Sg S-boxes

In this way, the number of total new S-boxes is 40320 due to an order of the
symmetric group because we are acting the elements of symmetric group Sg on the
elements of S-box.

Table 10. Action of Sg on residue prime S-box

T1((Sbox residue prime) = Sbox1
T2((Shox residue prime) = Sbox2
7T40320((Sb0x residue prime) = SbOX40320

Where my, m,, Ta,..., 4320 are the elements in Sg. In this algorithm, the
elements of original residue prime S-box is converted into binary form and then applying
the action of symmetric group Sg we get the 40320 new Sg residue prime S-boxes. This
process can be presented as follows

Table 11. Algorithm for Sg S-boxes

Residue prime S-box \?

Convert elements of residue prime S-boxes into bytes
Acting Sgon these elements
We get 40320 new Sg S-boxes

¥
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An example to construct new Sg residue prime S-boxes from the main S-box is
shown in table 2.12
Table 12. An example of bijective Sg S-boxes

0 |2 ]130]105{194]91 |23 [163|210|196]184]183|169|177]197]116
2421118188 217101150 |237]|189|71 [68 ]|102]221]90 |195]|60 |203
2461168]190]215]49 [136]179]|162|46 [147]166]9 |95 |20 |111]159
15342 |24 [125]158]82 |123]|243]|179|244[209]62 |45 |55 [216]89
2541107169 ]213{239]170]249]186|38 |150]|65 |36 [181]251]198]248
171]154]225|80 |206]127|3 |66 |180]37 |40 [226]176]164]228]29
99 |58 [135]139|33 |44 |63 |10 |235{152]178]250]188]|208]245|28
229|120]124125 114113717557 |15 [34 |173]140]113]236|51 |106
255|1 ]156]205(26 |143]122|83 |240|241]199|81 [119]160]231]138
142127 |234|11 |18 |74 |12 |96 |[110]21 |252{193]|218]223]117|121
2041571227122 |86 |98 |48 |222]219|70 [192]253]129]|56 |146|31
10885 |14 [52 |5 |75 |214]191]|100|212|76 |7 |92 |17 |43 |187
14918 |167|46 ]201]211]200]47 |6 |77 |13 [133]144]104]131]238
220]103]97 ]145|230]161]247]84 |253|232]112]141]126]207]41 |72
94 14 |53 ]202{61 |172]35 |148{182]|185]|67 |19 |224]155]39 |174
132132 |134(59 |79 |87 |73 |78 |54 |16 |93 [233]165]|64 [151]128

3.3 Generating Affine AES S-box through affine mapping

We introduce the affine mapping between byte and the AES S-box. In this case,
we firstly convert the elements of the S-box into binary digits and then develop a relation
between byte and all the elements of residue prime S-box. So we define a mapping
between two bytes such as
f:(10101010) ——»(11111111)

We define an affine mapping between the each binary pairs of the bytes, in the
above case we get the result (01010101). After converting all the elements through such
type of affine mapping we convert all these bytes into decimal. Here we generate new S-
box through affine mapping of the byte (10101010) and the elements of AES S-box and
by changing the byte we can generate finite many S-boxes. Also we develop an algorithm
to construct all possible 256 AES S-boxes having pseudo code is given below.
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» Pseudo Code
1-fetch data from AESSbox.txt to work on and store in an array
2- loop on this array
2.1 convert each element to binary
3- Get a random value r from converted binary elements
4-Permenute each element of array with r
4.1 Loop on each array element
4.1.1 Split each element to array
4.1.2 Loop on this sub_array
4.1.3 Perform permute step that is subtract each subvalue of sub_array with every
value of random number (r) binary
4.1.4 save result in permute variable
4.2 Save permute variable in permuted_array
5- Convert permuted_array back to decimal
6- Write permuted_array on file(data.txt) using file operations
» Flow Chart
The flow chart of the above Pseudo is given below which elaborate the complete
algorithm which consist of the following three steps.
» Step 1

|

& =
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» Step 2

it §eX.cantore_for_filo
(s} )

write: tonedt fiie
{stiepacn, Sarray, Ssave._keys=tabie)

path) B i writeabin$ filepath)

$indec=16 | | Sindmes1s=0

Scomtant=PHP_EDL fwrtte(Sfp, Scontenty

» Step3

SetArayToWark

iond_tatbed the
|Sfilonah, Sioad_keys=fakic)

fie_extststsftopatty

$ne = preg_spf{Mis}er, Scontent)
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3.4 Analysis of Sg residue prime S-boxes and affine S-boxes

We discuss most important ordinary properties which are founded in disparate S-
boxes to improve the strength of this recommended algorithm.

3.4.1 Algebraic complexity

The algebraic complexity of Sg residue prime S-boxes is the same as the AES in
T. Beth and C. Ding (1994). We are acting Sgon the original S-box where the elements of
Sgare permutations and these permutations do not affect the S-box’s algebraic
complexity. In the case of affine S-boxes we are developing the affine mapping between
the fixed byte and the original S-box where this fixed byte reshuffle the elements of S-
box just like permutations. These bytes do not affect the algebraic complexity of S-box.

3.4.2 Sg S-boxes and affine S-boxes are Bijective

In the Galois field GF(28) if we consider the input to all the elements of S-box,
then the output takes the unique values in GF(28). The example of bijective affine S-box
is given in table 2.13 below.

Table 12. Affine AES S-box

1561131|136{132]13 |148]|144]58 |207]|254|152{212|1 |40 |84 |9
72 1125]54 |130(5 ]166]184]15 |62 |43 |93 |80 [99 |91 |141]63
72 |2 ]108]217{201]192]|8 |51 [203]|90 |26 |14 [142]39 |206]234
251156 [220]60 |231]105]250|101|248{237]127]|29 |20 |216|77 |138
246|1241211]229]228]145]165|95 |173[196]41 |76 |214]28 |208]123
172146 |255|18 |223|3 |78 |164|149]52 |65 [198]181]179]167|48
47 |16 |85 |4 ]188]|178]204]122{186|6 |253]128]175]195]96 |87
174192 |191[112]109]98 |199]10 |67 |73 [37 |222]239]0 |12 |45
50 |243]36 |19 |160]104]187]|232|58 [88 ]129]194]155]162|230]140
1591126]176|35 |221]213]111]119]185]17 |71 [235|33 |161]244|36
31 |205]197]245{182]249]219]163|61 |44 |83 |157]110]106]27 134
24 |55 |200]146]114142 |177]|86 |147{169]11 |21 |154]133|81 |247
69 |135]218]209]227189 |75 |57 |23 [34 |139]|224]180]|66 |116|117
143]1193|74 |153]183]|252|9 |241]158]202]168|70 |121]62 |226|97
30 |7 ]103]238{150]38 |113]107{100|225]120]22 |49 |170]215|32
115194 |118|242]64 |25 |189]151]190|102{210{240]79 |171]68 |233
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3.4.3 Nonlinearity

Nonlinearity’s upper bound is N(f) = 2" — 227" for S-box in GF(28).As the
elements of S-box are in GF(28), 120 is the optimal value of N. Through Walsh
Hamamard transform of Boolean function we calculate the nonlinearity. The Sg residue
prime S-box is not entirely a non linear function and its nonlinearity is remained same
99.5 as the original residue prime S-box whereas the nonlinearity of affine AES S-box is
decreased by 110.875 as the original AES S-box has 112.

3.4.4 Balance Property
A Boolean functionf,,:Z} — Z, is known as balance function if

# {x| (x) = 0} = #{x|f (x) = 1} or HW(f) = 2"1. The main feather of this property is that
with higher the magnitude imbalance of a function, moreover due to this property we
obtained a high probability linear approximation. Thus, due to imbalance property
Boolean function becomes weak for linear cryptanalysis. Like AES and SgAES S-boxes,
all the Boolean functions f;i =1,2,3,...,8 used in the structure of the Affine and Sgresidue
prime S-boxes fulfill the criteria of balance property. Hence, our S-boxes are balanced.

3.4.5 Bit independence criterion

In cryptographic output bits independence criterion plays very vital role. It needs
pair wise all the avalanche variables however given set’s independent of avalanche
vectors. The avalanche vectors are constructed by the complementing of a single plaintext
bit. The main results of BIC analysis of proposed affine S-box are presented in Table
2.15. The BIC of this affine S-box is acceptable as compare with the other S-boxes in the
regard of encryption strength. So our S-box is comparable by analysis. It satisfies bit
independent criterion as presented.
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Table 13. Performance Indexes for S-box based on action of Sg on residue Prime

Analysis Max. Min. Average Square The The linear
Deviation differential approximation

approximation probability
probability

Nonlinearity 104 94 99.5

SAC 0.671875 0.34375 0.516846 0.0331112

BIC 94 102 3.5051

BIC- SAC 0.46875 0.502511 0.0180058

DP 0.273438

LP 162 0.136719

3.4.6 Linear approximation probability

We examine the variation of an event in the LP. This amount play key role in
determining the maximum imbalance value for the output in an event. The two masks I'x
and I'y which are used to link of the input bits and output bits. The LP is also expressed
as

LP = max |{#{X|X.FX= Sx).Iyy 1

o 35 |
Where all inputs contains in set X and total elements are 2™. The LP result of this
affine S-box is presented in table 15.

3.4.7 Differential approximation probability

The nonlinear transformation should be unique and lies in their differential
uniformity which is essential quality. The output differential Dy; maps by an input
differential Dx;which assure that uniformity in function probability for each. The DAP
of affine S-box is measured and expressed as:

DPS (Ax N Ay) - [# {x €X|S(x) @ S(x D Ax) =AY}]

zm

The differential approximation probability’s maximum value for proposed affine
S-box is 0.0234.Table 2.14 and Table 2.15 shows the comparison of differential
approximation probability of proposed S-boxes with AES, APA, Gray, Sg AES, Skipjack,
residue of prime and Xyi S-box.
The differential approximation probability is shown below in the table 14
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Table 14. Performance Indexes for affine AES S-box

Analysis Max.  Min. Average Square The The linear
Deviation  differential approximation

approximation probability
probability

Nonlinearity 113 109 110.875

SAC 0.5625 0.429688 0.505859 0.0160466

BIC 108 110.607  1.01204

BIC- SAC 0.486328 0.505162 0.011663

DP 0.0234375

LP 149 0.0820313

3.4.8 Strict avalanche criterion analytically

The SAC depends on the changing of input bit results and output bits. When a
single bit varies on input, it levels half of output bits and an S-box is satisfied SAC. The
avalanche of changes causes by a single variation in the input of network while
Substitution Permutation (S-P) network is used in S-box. The comparison of affine S-box
is shown in the table 15 below

Table 15. Comparison of Performance indexes of proposed Affine AES S-box and
other S-boxes

S-boxes Nonlinearity | SAC BIC- BIC DP LP
SAC
AES S-box 112 0.5058 0.504 112.0 0.0156 0.062
APA S-box 112 0.4987 0.499 112.0 0.0156 0.062
Gray S-box 112 0.5058 0.502 112.0 0.0156 0.062
Skipjack S-box 105.7 0.4980 0.499 104.1 0.0468 0.109
Xyi S-box 105 0.5048 0.503 103.7 0.0468 0.156
Residue Prime 99.5 0.5012 0.502 101.7 0.2810 0.132
Affine AES S-box | 110.875 0.505859 | 0.505162 | 110.607 | 0.023437 | 0.082031
5 3

3.5 Image encryption applications

It turn to a major issue that how can we make secure and reliable confidentiality,
authenticity and probity of image. The encryption of the image is to mediate the image
reliably over the channel or network so that any unofficial user can free to decrypt the
image. The encryption of the image and video encryption have vast applications and
usage in the area including the communication through internet, mediation, armed
communications etc. The progression of encryption is moving toward a future of endless
possibilities. Here we encrypt the Lena’s image through affine AES and residue prime Sg
S-box. We do some statistical analysis and compare them with other S-boxes.
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3.6 Statistical Analysis

Here, we evaluate the plain and encrypted image by some statistical analyses
namely; energy, homogeneity, contrast, correlation and entropy. Instead of algebraic
analysis we implement this newly proposed balanced 8 x 8 S-box in image encryption
through these statistical analyses.

3.6.1 Energy

The energy of encrypted image is assessed by energy analysis. The Gray-Level
Co-occurrence Matrix (GLCM) is used for this resolve. Energy is defined as the sum of
squared components in GLCM. That is

E =33 p*(u,v), whereu and v show the pixels in the image and p(u,v) provides the

number of GLCM. For constant image the value of energy is 1.

3.6.2 Homogeneity

The substances of an image are surely distributed. In homogeneity analysis, the
nearness of distributed elements of GLCM to GLCM diagonal is calculated. It is also
famous as gray tone spatial dependency matrix. The GLCM exemplifies the statistics of
arrangement of pixel gray levels in tabular form. The analysis can be lengthy further by
treating entries from GLCM table. The precise form of Homogeneity is
Hogy PUY)

C v 1-|u-v

3.6.3 Contrast

The value of contrast supports the observer to detect the objects of an image. A
balanced contrast value in the image soaks the objects which permits the more accurate
image ID. By way of the value of randomness upsurges in encrypted image, it also
increases the contrast to very high level. Due to nonlinearity of mapping, the objects of
the image are slanted entirely. That is the high value of contrast in the encrypted image
displays the strong encryption since it is reliably related to the confusion produced by the
S-box. That is

C=YX(u—-Vv) p(u,v) Inthe case of constant image, the value of contrast is zero.
u v

3.6.4 Correlation

Correlation analysis is done in three diverse ways. The vertical, horizontal and
diagonal formats are designated for this purpose. By allowing for the texture of entire
image, the correlation of pixel to its neighbors is examined. For the resolution, the
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complete image is also analyzed together with partial regions. The correlation is
considered as
K =y U= m)lv—pm)plu,v)

0,0,

For a faultlessly positive or perfectly negative images, the value of correlation is
1 or -1 respectively. And for constant image, the correlation is zero, which means that
it is not a number, it is just a data type for demonstrating the redefined value.

3.6.5 Entropy

The quantity of randomness is measured by entropy. The degree of entropy is
related with the organization of the objects in an image. The randomness of an image is
enlarged by substituting nonlinear components in the system. The top level of randomness
styles the image hard to detect. Nevertheless, due to lacking in randomness, the encrypted
image is just recognized. Hereafter, the encryption strength of an encrypted image is
straight measured with entropy and its mathematical form is

H= _é p(xk)logb p(Xk )!

where X, represents the histogram calculations. The results of newly proposed 8 x

8 S-box for this analysis are shown in Table 17 and Table 18 which are closed to the
standard values.

Table 16. Contrast, Correlation, Energy, Homogeneity and entropy of plain image and
cipher image of Lena (512x512, png) by affine AES S-box and residue prime Sg S-box.

Images Entropy | Contrast | Correlation | Energy | Homogeneity
Plain image 7.4451 | 0.2100 0.9444 0.1455 | 0.9084
Affine AES S-box 7.5710 | 9.6320 0.1341 0.0182 | 0.4669
Residue prime Sg | 7.5647 | 9.5568 0.1363 0.0184 | 0.4625
S-box

Table 17. Comparison of P Contrast, Correlation, Energy, Homogeneity and entropy of
plain image and cipher image of Lena (512x512, png) of affine AES S-box and residue
prime SgS-box with different S-boxes

Images Entropy | Contrast | Correlation | Energy | Homogeneity
Plain image 7.4451 0.2100 0.9444 0.1455 0.9084
Affine AES S-box 7.5710 9.6320 0.1341 0.0182 0.4669

residue prime Sg S- | 7.5647 9.5568 0.1363 0.0184 0.4625
box
AES S-box 7.2531 7.5509 0.0554 0.0202 0.4662
APA S-box 7.2531 8.1195 0.1473 0.0183 0.4676
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Residue prime S-| 7.2531 7.6236 0.0855 0.0202 0.4640
box

SgAES S-box 7.2357 7.4852 0.1235 0.0208 0.4707
Gray S-box 7.2531 7.5283 0.0586 0.0203 0.4623
Xyi S-box 7.2531 8.3108 0.0417 0.0196 0.4533
Skipjack S-box 7.2531 7.7058 0.1025 0.0193 0.4689

Figure 7.

Figure 8. Lena encrypted image by residue prime SgS-box
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CONCLUSION

In this proposed work we have developed two different techniques to generate the
new S-boxes and then discussed their different properties like nonlinearity, BIC, DAP,
and LAP etc. We compare the strength and properties with other well known S-boxes and
the comparison is given in tables. The nonlinearity of the Sg residue prime S-box do not
change whereas in the case of affine AES S-boxes are decreased. In the second technique
we can generate finite many S-boxes with different nonlinearity. In this technique, we
can get different 256 S-boxes by changing the fixed byte with different nonlinearity
whereas by the action of symmetric group Sgwe get 40320 S-boxes with same
nonlinearity. Although for the nonlinearity point of view it has deficiency but an
improvement in the strength for image encryption as shown in statistical analysis. There
are still lot of works for analysis point of view of these newly constructed S-boxes and
further we can apply this newly develop technique on different S-boxes to construct new
S-boxes.
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