Evaluasi Model Faktor Laten dalam Kondisi Kelangkaan Data: Studi Kasus Rendahnya Pembelian Ulang pada E-Commerce
DOI:
https://doi.org/10.33367/ijhass.v6i4.8431Keywords:
Matrix Factorization, Neural Matrix Factorization, Product Recommendation, E-commerce, Machine LearningAbstract
The accuracy of recommendation systems is vital for successful personalization in e-commerce. However, the low frequency of repeat purchases creates hight data sparsity, limiting models in capturing user preferences. This study compares two latent factor-based algorithms. Matrix Factorization (MF) and Neural Matrix Factorization (NeuMF), using the Olist transaction dataset through data preparation, k-core filtering, and leave last out splitting. Performance was evaluated using HR@10 and NDCG@10. Results show that MF outperforms NeuMF, achieving HR@10 of 0,057 and NDCG@10 of 0,133. Although NeuMD is more complex and represents a deeper learning-based approach, MF can still be more suitable in certain data conditions, especially when interaction are limited. These findings highlight that simpler models may remain more efficient under sparse data, while NeuMF requires richer interactions histories. The study emphasizes repeat purchase frequency as a key factor in designing adaptive reommendations systems.
References
Chen, Chong, Min Zhang, Yongfeng Zhang, Yiqun Liu, and Shaoping Ma. “Efficient Neural Matrix Factorization without Sampling for Recommendation.” ACM Transactions on Information Systems 38, no. 2 (2020): 1–28. https://doi.org/10.1145/3373807.
Dhenabayu, Riska, Hujjatullah Fazlurrahman, and Purwohandoko. “Potential Researches of GAN in Fashion Areas.” 2023 6th International Conference of Computer and Informatics Engineering (IC2IE), IEEE, September 14, 2023, 276–81. https://doi.org/10.1109/IC2IE60547.2023.10331411.
Endarwati, Esti Tri, Yunita Indriany, Rusdianto Rusdianto, Ni Nyoman Suarniki, and Lusiana Pratiwi. “The Effect of Product Personalization, User Experience, and Consumer Trust on the Level of E-Commerce Consumer Satisfaction in Indonesia.” Jurnal Bisnisman : Riset Bisnis Dan Manajemen 6, no. 1 (2024): 163–79. https://doi.org/10.52005/bisnisman.v6i1.239.
Faizin, Arief, and Isti Surjandari. “Product Recommender System Using Neural Collaborative Filtering for Marketplace in Indonesia.” IOP Conference Series: Materials Science and Engineering 909, no. 1 (2020): 012072. https://doi.org/10.1088/1757-899X/909/1/012072.
Griha Tofik Isa, Indra, Zulkarnaini Zulkarnaini, Leni Novianti, Febie Elfaladonna, and Suzan Agustri. “Exploratory Data Analysis (EDA) dalam Dataset Penerimaan Mahasiswa Baru Universitas XYZ Palembang.” Smart Comp: Jurnalnya Orang Pintar Komputer 12, no. 3 (2023): 600–609. https://doi.org/10.30591/smartcomp.v12i3.4125.
Jakomin, Martin, Zoran Bosnic, and Tomaz Curk. “Simultaneous Incremental Matrix Factorization for Streaming Recommender Systems.” Expert Systems with Applications Volume 160 (2020): 113685. https://doi.org/10.1016/j.eswa.2020.113685.
Johnson, Nuraeni, Mustika Sufiati Purwanegara, and Nur Budi Mulyono. “Enhancing E-Commerce with Big Data: From Browsing to Buying Through Recommendation Systems.” International Journal of Entrepreneurship, Business and Creative Economy 4, no. 1 (2024): 130–45. https://doi.org/10.31098/ijebce.v4i1.1930.
Kalimeris, Dimitris, Smriti Bhagat, Shankar Kalyanaraman, and Udi Weinsberg. “Preference Amplification in Recommender Systems.” Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, ACM, August 14, 2021, 805–15. https://doi.org/10.1145/3447548.3467298.
Neha, Gupta, Vaishali Joshi, Aishwarya Chourey, and Ekta Acharya. “Synergistic Neural Matrix Factorization: Elevating Complementary Product Recommendations in E-Commerce Using Deep Neural Networks.” 2024 3rd Edition of IEEE Delhi Section Flagship Conference (DELCON), 2024, 1–4. https://doi.org/10.1109/DELCON64804.2024.10866612.
Nesterov, Vasyl. “ANALYZING USER BEHAVIOR PATTERNS FOR PERSONALIZED RECOMMENDER SYSTEMS IN E-COMMERCE: A LITERATURE REVIEW.” Automation of Technological and Business Processes 16, no. 3 (2024): 69–76. https://doi.org/10.15673/atbp.v16i3.2923.
Ong, Kyle, Kok-Why Ng, and Su-Cheng Haw. “Neural Matrix Factorization++ Based Recommendation System.” F1000Research 10 (October 2021): 1079. https://doi.org/10.12688/f1000research.73240.1.
Pradnyanita, Ni Kadek Santika, Dewa Ayu Kd Audya Sahya Devanie, and I Made Indra Widiatmika. “Analisis Pengaruh E-Commerce Terhadap Perubahan Pola Konsumsi Masyarakat: Tinjauan Literatur.” JUWARA: Jurnal Wawasan dan Aksara 01, no. 01 (2025). https://doi.org/10.25078/juwara.v1i1.4871.
Prayogo, Janny Eka, Aries Suharso, and Adhi Rizal. “Analisis Perbandingan Model Matrix Factorization dan K-Nearest Neighbor dalam Mesin Rekomendasi Collaborative Berbasis Prediksi Rating.” Jurnal Informatika Universitas Pamulang 5, no. 4 (2021): 506. https://doi.org/10.32493/informatika.v5i4.7379.
Rahmany, Mahathir, Abdullah Mohd Zin, and Elankovan A Sundararajan. “COMPARING TOOLS PROVIDED BY PYTHON AND R FOR EXPLORATORY DATA ANALYSIS.” IJISCS (International Journal of Information System and Computer Science) 4, no. 3 (2020): 131. https://doi.org/10.56327/ijiscs.v4i3.933.
Regita Fatricia Agustina, M.Celvin Febrian Syafei, Sunandie Eko Ginanjar, and Siti Aninditya. “Kepercayaan Kepuasan Loyalitas Konsumen Dalam Membeli Barang Di Aplikasi Online Shop.” Jurnal Kajian dan Penalaran Ilmu Manajemen 2, no. 1 (2024): 261–72. https://doi.org/10.59031/jkpim.v2i1.351.
Santosa, Handi Dipo, Leo Manulang, Ramadani Saputra, and Evi Sofiati. “Analysis of the Impact of Online Marketing Campaigns on Consumer Behavior in Indonesia’s E-Commerce Market.” Pinisi Discretion Review 7, no. 2 (2024). https://doi.org/10.26858/pdr.v7i2.66001.
Sumita Wardani, Saidan Sany Lubis, and Rico Wijaya Dewantoro. “Analisis Big Data untuk Prediksi Permintaan Produk dalam E-commerce.” Jurnal Penelitian Teknologi Informasi dan Sains 3, no. 1 (2025): 74–81. https://doi.org/10.54066/jptis.v3i1.3066.
Suryati, Suryati, Efti Novita Sari, and Eva Yuniarti Utami. “The Effect of Customer Engagement, Content Personalization, and Trust on Purchasing Decisions in Indonesian E-Commerce: A Case Study on the Fashion Industry.” West Science Journal Economic and Entrepreneurship 1, no. 06 (2023): 134–43. https://doi.org/10.58812/wsjee.v1i06.453.
Thota, Sunil Raj, and Saransh Arora. “COLLABORATIVE FILTERING AND KNOWLEDGE GRAPHS FOR DATA DISCOVERY.” International Research Journal of Modernization in Engineering Technology and Science 06, no. 05 (2024). https://doi.org/10.56726/IRJMETS56957.
Universitas Telkom, Putu Puspita Sari Sastradi Putri, Cut Irna Setiawati, and Universitas Telkom. “E-SERVICE QUALITY, CUSTOMER SATISFACTION, AND REPURCHASE INTENTION: ANALYZING THE IMPACT ON E-COMMERCE PLATFORM.” JURNAL APLIKASI MANAJEMEN 19, no. 4 (2021): 825–37. https://doi.org/10.21776/ub.jam.2021.019.04.11.
Published
Issue
Section
License
Copyright (c) 2025 Tria Rizky Rosmalia, Riska Dhenabayu, Hujjatullah Fazlurrahman, Renny Sari Dewi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
Views:
85,
PDF downloads: 59






